Anaplastic Lymphoma Kinase (ALK) Signaling in Lung Cancer

  • Sai-Hong Ignatius OuEmail author
  • Keisuke Shirai
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 893)


Chromosomal rearrangement in the anaplastic lymphoma kinase (ALK) gene was identified as an oncogenic driver in non-small cell lung cancer (NSCLC) in 2007. A multi-targeted ALK/ROS1/MET inhibitor, crizotinib, targeting this activated tyrosine kinase has led to significant clinical benefit including tumor shrinkage and prolonged survival without disease progression and has been approved by US FDA since 2011 for the treatment of advanced ALK-rearranged NSCLC (Ou et al. Oncologist 17:1351–1375, 2012). Knowledge gained from treating ALK-rearranged NSCLC patients including the presenting clinicopathologic characteristics, methods of detecting ALK-rearranged NSCLC, pattern of relapse and acquired resistance mechanisms while on crizotinib, and the clinical activities of more potent ALK inhibitors has led us to a detailed and ever expanding knowledge of the ALK signaling pathway in lung cancer but also raising many more questions that remained to be answered in the future. This book chapter will provide a concise summary of the importance of ALK signaling pathway in lung cancer. Understanding the ALK signaling pathway in lung cancer will likely provide the roadmap to the management of major epithelial malignancies driven by receptor tyrosine kinase rearrangement.


Anaplastic lymphoma kinase rearrangement non-small cell lung cancer Receptor tyrosine kinase fusion positive tumors Crizotinib ALK breakapart FISH Chromosomal rearrangement 


  1. 1.
    Mitelman F, Johansson B, Mertens F (2004) Fusion genes and rearranged genes as a linear function of chromosome aberrations in cancer. Nat Genet 36:331–334CrossRefPubMedGoogle Scholar
  2. 2.
    Soda M, Choi YL, Enomoto M et al (2007) Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448:561–566CrossRefPubMedGoogle Scholar
  3. 3.
    Rikova K, Guo A, Zeng Q et al (2007) Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 131:1190–1203CrossRefPubMedGoogle Scholar
  4. 4.
    Soda M, Takada S, Takeuchi K et al (2008) A mouse model for EML4-ALK-positive lung cancer. Proc Natl Acad Sci U S A 105:19893–19897CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Blume-Jensen P, Hunter T (2001) Oncogenic kinase signalling. Nature 411:355–365CrossRefPubMedGoogle Scholar
  6. 6.
    Morris SW, Kirstein MN, Valentine MB et al (1994) Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science 263:1281–1284CrossRefPubMedGoogle Scholar
  7. 7.
    Chiarle R, Voena C, Ambrogio C et al (2008) The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat Rev Cancer 8:11–23CrossRefPubMedGoogle Scholar
  8. 8.
    Takezawa K, Okamoto I, Nishio K et al (2011) Role of ERK-BIM and STAT3-survivin signaling pathways in ALK inhibitor-induced apoptosis in EML4-ALK-positive lung cancer. Clin Cancer Res 17:2140–2148CrossRefPubMedGoogle Scholar
  9. 9.
    Ou SH, Bartlett CH, Mino-Kenudson M et al (2012) Crizotinib for the treatment of ALK- rearranged non-small cell lung cancer: a success story to usher in the second decade of molecular targeted therapy in oncology. Oncologist 17:1351–1375CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Li T, Maus MK, Desai SJ et al (2014) Large-scale screening and molecular characterization of EML4-ALK fusion variants in archival non-small-cell lung cancer tumor specimens using quantitative reverse transcription polymerase chain reaction assays. J Thorac Oncol 9:18–25CrossRefPubMedGoogle Scholar
  11. 11.
    Fang DD, Zhang B, Gu Q et al (2014) HIP1-ALK, a novel ALK fusion variant that responds to crizotinib. J Thorac Oncol 9:285–294CrossRefPubMedGoogle Scholar
  12. 12.
    Hong M, Kim RN, Song JY et al (2014) HIP1-ALK, a novel fusion protein identified in lung adenocarcinoma. J Thorac Oncol 9:419–422CrossRefPubMedGoogle Scholar
  13. 13.
    Heuckmann JM, Balke-Want H, Malchers F et al (2012) Differential protein stability and ALK inhibitor sensitivity of EML4-ALK fusion variants. Clin Cancer Res 18:4682–4690CrossRefPubMedGoogle Scholar
  14. 14.
    Shaw AT, Yeap BY, Mino-Kenudson M et al (2009) Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK. J Clin Oncol 27:4247–4253CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kwak EL, Bang YJ, Camidge DR et al (2010) Anaplastic lymphoma kinase inhibition in non- small-cell lung cancer. N Engl J Med 363:1693–1703CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Camidge DR, Bang YJ, Kwak EL et al (2012) Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: updated results from a phase 1 study. Lancet Oncol 13:1011–1019CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Yoshida A, Tsuta K, Nakamura H et al (2011) Comprehensive histologic analysis of ALK- rearranged lung carcinomas. Am J Surg Pathol 35:1226–1234CrossRefPubMedGoogle Scholar
  18. 18.
    Klempner SJ, Cohen DW, Costa DB (2011) ALK translocation in non-small cell lung cancer with adenocarcinoma and squamous cell carcinoma markers. J Thorac Oncol 6:1439–1440CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Toyokawa G, Takenoyama M, Taguchi K et al (2013) An extremely rare case of small-cell lung cancer harboring variant 2 of the EML4-ALK fusion gene. Lung Cancer 81:487–490CrossRefPubMedGoogle Scholar
  20. 20.
    Ou SH (2013) Lung cancer in never-smokers. Does smoking history matter in the era of molecular diagnostics and targeted therapy? J Clin Pathol 66:839–846CrossRefPubMedGoogle Scholar
  21. 21.
    Doebele RC, Lu X, Sumey C et al (2012) Oncogene status predicts patterns of metastatic spread in treatment-naive nonsmall cell lung cancer. Cancer 118:4502–4511CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Shaw AT, Kim DW, Nakagawa K et al (2013) Crizotinib versus chemotherapy in advanced ALK- positive lung cancer. N Engl J Med 368:2385–2394CrossRefPubMedGoogle Scholar
  23. 23.
    Camidge DR, Kono SA, Lu X et al (2011) Anaplastic lymphoma kinase gene rearrangements in non-small cell lung cancer are associated with prolonged progression-free survival on pemetrexed. J Thorac Oncol 6:774–780CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Shaw AT, Varghese AM, Solomon BJ et al (2013) Pemetrexed-based chemotherapy in patients with advanced, ALK-positive non-small cell lung cancer. Ann Oncol 24:59–66CrossRefPubMedGoogle Scholar
  25. 25.
    Berge EM, Lu X, Maxson D, Barón AE et al (2013) Clinical benefit from pemetrexed before and after crizotinib exposure and from crizotinib before and after pemetrexed exposure in patients with anaplastic lymphoma kinase-positive non-small-cell lung cancer. Clin Lung Cancer 14:636–643CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Lee JO, Kim TM, Lee SH et al (2011) Anaplastic lymphoma kinase translocation: a predictive biomarker of pemetrexed in patients with non-small cell lung cancer. J Thorac Oncol 6:1474–1480CrossRefPubMedGoogle Scholar
  27. 27.
    Ou SHI, Soo RA, Kubo A et al (2014) Will the requirement by the US FDA to simultaneously co- develop companion diagnostics (CDx) delay the approval of receptor tyrosine kinase inhibitors for RTK-rearranged (ROS1-, RET-, AXL-, PDGFR-α-, NTRK1-) non-small cell lung cancer globally? Front Oncol. doi: 10.3389/fonc.2014.00058 PubMedPubMedCentralGoogle Scholar
  28. 28.
    Paik JH, Choe G, Kim H et al (2011) Screening of anaplastic lymphoma kinase rearrangement by immunohistochemistry in non-small cell lung cancer: correlation with fluorescence in situ hybridization. J Thorac Oncol 6:466–472CrossRefPubMedGoogle Scholar
  29. 29.
    Ying J, Guo L, Qiu T et al (2013) Diagnostic value of a novel fully automated immunochemistry assay for detection of ALK rearrangement in primary lung adenocarcinoma. Ann Oncol 24:2589–2593CrossRefPubMedGoogle Scholar
  30. 30.
    Mino-Kenudson M, Chirieac LR, Law K et al (2010) A novel, highly sensitive antibody allows for the routine detection of ALK-rearranged lung adenocarcinomas by standard immunohistochemistry. Clin Cancer Res 16:1561–1571CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ou SH, Azada M, Hsiang D et al (2014) Next-generation sequencing reveals a novel NSCLC ALK F1174V mutation and confirms ALK G1202R mutation confers high-level resistance to alectinib (CH5424802/RO5424802) in ALK-rearranged NSCLC patients who progressed on crizotinib. J Thorac Oncol 9:549–553CrossRefGoogle Scholar
  32. 32.
    Kim HR, Shim HS, Chung JH et al (2012) Distinct clinical features and outcomes in never- smokers with nonsmall cell lung cancer who harbor EGFR or KRAS mutations or ALK rearrangement. Cancer 118:729–739CrossRefPubMedGoogle Scholar
  33. 33.
    Yang P, Kulig K, Boland JM et al (2012) Worse disease-free survival in never-smokers with ALK+ lung adenocarcinoma. J Thorac Oncol 7:90–97CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Shaw AT, Yeap BY, Solomon BJ et al (2011) Effect of crizotinib on overall survival in advanced NSCLC harboring anaplastic lymphoma kinase gene rearrangement: a retrospective analysis. Lancet Oncol 11:1004–1012CrossRefGoogle Scholar
  35. 35.
    Takeuchi K, Soda M, Togashi Y et al (2012) RET, ROS1 and ALK fusions in lung cancer. Nat Med 18:378–381CrossRefPubMedGoogle Scholar
  36. 36.
    Ou SH, Janne PA, Bartlett CH et al (2014) Clinical benefit of continuing ALK inhibition with crizotinib beyond initial disease progression in patients with advanced ALK-positive NSCLC. Ann Oncol 25:415–422CrossRefPubMedGoogle Scholar
  37. 37.
    Zou HY, Li Q, Lee JH et al (2007) An orally available small-molecule inhibitor of c-Met, PF- 2341066, exhibits cytoreductive antitumor efficacy through antiproliferative and antiangiogenic mechanisms. Cancer Res 67:4408–4417CrossRefPubMedGoogle Scholar
  38. 38.
    Christensen JG, Zou HY, Arango ME et al (2007) Cytoreductive antitumor activity of PF- 2341066, a novel inhibitor of anaplastic lymphoma kinase and c-Met, in experimental models of anaplastic large-cell lymphoma. Mol Cancer Ther 6:3314–3322CrossRefPubMedGoogle Scholar
  39. 39.
    Gan GN, Weickhardt AJ, Scheier B et al (2014) Stereotactic radiation therapy can safely and durably control sites of extra-central nervous system oligoprogressive disease in anaplastic lymphoma kinase-positive lung cancer patients receiving crizotinib. Int J Radiat Oncol Biol Phys 88:892–898CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Pop O, Pirvu A, Toffart AC et al (2012) Disease flare after treatment discontinuation in a patient with EML4-ALK lung cancer and acquired resistance to crizotinib. J Thorac Oncol 7:e1–e2CrossRefPubMedGoogle Scholar
  41. 41.
    Costa DB, Kobayashi S, Pandya SS et al (2011) CSF concentration of the anaplastic lymphoma kinase inhibitor crizotinib. J Clin Oncol 29:e443–e445CrossRefPubMedGoogle Scholar
  42. 42.
    Choi YL, Soda M, Yamashita Y et al (2010) EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N Engl J Med 363:1734–1739CrossRefPubMedGoogle Scholar
  43. 43.
    Doebele RC, Pilling AB, Aisner DL et al (2012) Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer. Clin Cancer Res 18:1472–1482CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Katayama R, Shaw AT, Khan TM et al (2012) Mechanisms of acquired crizotinib resistance in ALK-rearranged lung cancers. Sci Transl Med 4:120ra17CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Lovly CM, Pao W (2012) Escaping ALK inhibition: mechanisms of and strategies to overcome resistance. Sci Transl Med 4:120ps2CrossRefPubMedGoogle Scholar
  46. 46.
    Sasaki T, Koivunen J, Ogino A et al (2011) A novel ALK secondary mutation and EGFR signaling cause resistance to ALK kinase inhibitors. Cancer Res 71:6051–6060CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Sasaki T, Janne PA (2011) New strategies for treatment of ALK rearranged non-small cell lung cancers. Clin Cancer Res 17:7213–7218CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Seto T, Kiura K, Nishio M et al (2013) CH5424802 (RO5424802) for patients with ALK- rearranged advanced non-small-cell lung cancer (AF-001JP study): a single-arm, open- label, phase 1–2 study. Lancet Oncol 14:590–598CrossRefPubMedGoogle Scholar
  49. 49.
    Ou S, Gadgeel S, Chiappori A et al (2013) Safety and efficacy analysis of RO5424802/CH5424802 in anaplastic lymphoma kinase (ALK)-positive non-small cell lung cancer (NSCLC) patients who have failed crizotinib in a dose-finding phase I study (AF-002JG, NCT01588028). Eur J Cancer 49(2):LBA44Google Scholar
  50. 50.
    Shaw AT, Kim DW, Mehra R et al (2014) Ceritinib in ALK-rearranged non-small-cell lung cancer. N Engl J Med 370:1189–1197CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Friboulet L, Li N, Katayama R et al (2014) The ALK inhibitor ceritinib overcomes crizotinib resistance in non-small cell lung cancer. Cancer Discov 4:662–673Google Scholar
  52. 52.
    Shaw AT, Hsu PP, Awad MM et al (2013) Tyrosine kinase gene rearrangements in epithelial malignancies. Nat Rev Cancer 13:772–787CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Godbert Y, Henriques de Figueiredo B, Bonichon F et al. (2014) Remarkable response to crizotinib in woman with anaplastic lymphoma kinase-rearranged anaplastic thyroid carcinoma. J Clin Oncol. 2015 Jul 10;33(20):e84–7Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Chao Family Comprehensive Cancer Center, Department of Medicine, Division of Hematology-OncologyUniversity of California Irvine School of MedicineOrangeUSA
  2. 2.MUSC Hollings Cancer Center, Department of Medicine, Division of Hematology-OncologyMedical University of South Carolina College of MedicineCharlestonUSA

Personalised recommendations