Advertisement

Anti-angiogenesis in Personalized Therapy of Lung Cancer

  • Peter M. EllisEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 893)

Abstract

Upregulation of angiogenesis is a frequent occurrence in lung cancer and is reported to represent a negative prognostic factor. This provides a rationale for the development and evaluation of anti-angiogenic agents. To date bevacizumab, a monoclonal antibody directed against serum VEGF, is the only anti-angiogenic agent that has demonstrated improved overall survival for patients with lung cancer. Meta-analysis of trials of bevacizumab in combination with platinum-based chemotherapy for NSCLC, show a 10 % reduction in the risk of death (HR 0.90, 95 % CI 0.81–0.99). However, therapy with bevacizumab is limited to NSCLC patients with non-squamous histology, good performance status, no brain metastases and the absence of bleeding or thrombotic disorders. More recently, similar survival was observed in a non bevacizumab containing regimen of carboplatin, pemetrexed and maintenance pemetrexed.

Multiple oral anti-angiogenic compounds have been evaluated in NSCLC, both in first-line therapy, or upon disease progression. The majority of agents have shown some evidence of activity, but none have clearly demonstrated improvements in overall survival. Increased toxicities have been observed, including an increased risk of death for some agents, limiting their development. Promising data exist for sunitinib in patients with heavily pre-treated NSCLC, and nintedanib in combination with docetaxel, as second-line therapy for NSCLC. However, these findings require validation. Currently, there is no established role for anti-angiogenic therapy in SCLC, although there is some promise for sunitinib as maintenance therapy following platinum and etoposide chemotherapy.

The challenge for anti-angiogenic therapy is to understand whether treatment effects in a subpopulation, are lost among a larger unselected population of patients. There is a need for additional translational research to identify predictive biomarkers for anti-angiogenic therapy.

Keywords

Anti-angiogenic therapy NSCLC SCLC VEGFR PDGFR FGFR Bevacizumab VEGF-trap Tyrosine kinase inhibitors Predictive biomarkers 

References

  1. 1.
    Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364PubMedCrossRefGoogle Scholar
  2. 2.
    Folkman J, Klagsbrun M (1987) Vascular physiology. A family of angiogenic peptides. Nature 329:671–672PubMedCrossRefGoogle Scholar
  3. 3.
    Kim KJ, Li B, Winer J et al (1993) Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362:841–844PubMedCrossRefGoogle Scholar
  4. 4.
    Alvarez RH, Kantarjian HM, Cortes JE (2006) Biology of platelet-derived growth factor and its involvement in disease. Mayo Clin Proc 81:1241–1257PubMedCrossRefGoogle Scholar
  5. 5.
    Presta M, Dell’Era P, Mitola S, Moroni E, Ronca R, Rusnati M (2005) Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev 16:159–178PubMedCrossRefGoogle Scholar
  6. 6.
    Kerbel RS (2006) Antiangiogenic therapy: a universal chemosensitization strategy for cancer? Science 312:1171–1175PubMedCrossRefGoogle Scholar
  7. 7.
    Ferrara N, Gerber H-P, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676PubMedCrossRefGoogle Scholar
  8. 8.
    Toi M, Matsumoto T, Bando H (2001) Vascular endothelial growth factor: its prognostic, predictive, and therapeutic implications. Lancet Oncol 2:667–673PubMedCrossRefGoogle Scholar
  9. 9.
    Leighl N, Reck M, de Haas S et al (2009) Analysis of biomarkers (BMs) in the AVAiL phase III randomised study of first-line Bevacizumab (Bv) with cisplatin-gemcitabine (CG) in patients (pts) with non-small cell lung cancer (NSCLC). Euro J Cancer Suppl 7:558CrossRefGoogle Scholar
  10. 10.
    Bergsten E, Uutela M, Li X et al (2001) PDGF-D is a specific, protease-activated ligand for the PDGF beta-receptor. Nat Cell Biol 3:512–516PubMedCrossRefGoogle Scholar
  11. 11.
    Wu E, Palmer N, Tian Z et al (2008) Comprehensive dissection of PDGF-PDGFR signaling pathways in PDGFR genetically defined cells. PLoS One 3, e3794PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Bergers G, Song S, Meyer-Morse N, Bergsland E, Hanahan D (2003) Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 111:1287–1295PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Erber R, Thurnher A, Katsen AD et al (2004) Combined inhibition of VEGF and PDGF signaling enforces tumor vessel regression by interfering with pericyte-mediated endothelial cell survival mechanisms. FASEB J 18:338–340PubMedGoogle Scholar
  14. 14.
    Rusnati M, Presta M (2007) Fibroblast growth factors/fibroblast growth factor receptors as targets for the development of anti-angiogenesis strategies. Curr Pharm Des 13:2025–2044PubMedCrossRefGoogle Scholar
  15. 15.
    Kano MR, Morishita Y, Iwata C et al (2005) VEGF-A and FGF-2 synergistically promote neoangiogenesis through enhancement of endogenous PDGF-B-PDGFRbeta signaling. J Cell Sci 118:3759–3768PubMedCrossRefGoogle Scholar
  16. 16.
    Nissen LJ, Cao R, Hedlund E-M et al (2007) Angiogenic factors FGF2 and PDGF-BB synergistically promote murine tumor neovascularization and metastasis. J Clin Invest 117:2766–2777PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Sandler A, Gray R, Perry MC et al (2006) Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 355:2542–2550PubMedCrossRefGoogle Scholar
  18. 18.
    Johnson DH, Fehrenbacher L, Novotny WF et al (2004) Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J Clin Oncol 22:2184–2191PubMedCrossRefGoogle Scholar
  19. 19.
    Niho S, Kunitoh H, Nokihara H et al (2012) Randomized phase II study of first-line carboplatin-paclitaxel with or without bevacizumab in Japanese patients with advanced non-squamous non-small-cell lung cancer. Lung Cancer 76:362–367PubMedCrossRefGoogle Scholar
  20. 20.
    Reck M, von Pawel J, Zatloukal P et al (2009) Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAil. J Clin Oncol 27:1227–1234PubMedCrossRefGoogle Scholar
  21. 21.
    Reck M, von Pawel J, Zatloukal P et al (2010) Overall survival with cisplatin-gemcitabine and bevacizumab or placebo as first-line therapy for nonsquamous non-small-cell lung cancer: results from a randomised phase III trial (AVAiL). Ann Oncol 21:1804–1809PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Zhou C, Chen G, Liu X et al (2013) BEYOND: a randomized, double-blind, placebo-controlled, multicentre, phase iii study of first-line carboplatin/paclitaxel (CP) plus bevacizumab (BV) or placebo (PL) in Chinese patients with advanced or recurrent non-squamous non-small cell lung cancer (NSCLC). J Thorac Oncol 8:MO06.13Google Scholar
  23. 23.
    Lopez-Chavez A, Young T, Fages S et al (2012) Bevacizumab maintenance in patients with advanced non-small-cell lung cancer, clinical patterns, and outcomes in the Eastern Cooperative Oncology Group 4599 Study: results of an exploratory analysis. J Thorac Oncol 7:1707–1712PubMedCrossRefGoogle Scholar
  24. 24.
    Nadler E, Yu E, Ravelo A, Sing A, Forsyth M, Gruschkus S (2011) Bevacizumab treatment to progression after chemotherapy: outcomes from a U.S. Community practice network. Oncologist 16:486–496PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Soria JC, Mauguen A, Reck M et al (2013) Systematic review and meta-analysis of randomised, phase II/III trials adding bevacizumab to platinum-based chemotherapy as first-line treatment in patients with advanced non-small-cell lung cancer. Ann Oncol 24:20–30PubMedCrossRefGoogle Scholar
  26. 26.
    Botrel TE, Clark O, Clark L, Paladini L, Faleiros E, Pegoretti B (2011) Efficacy of bevacizumab (Bev) plus chemotherapy (CT) compared to CT alone in previously untreated locally advanced or metastatic non-small cell lung cancer (NSCLC): systematic review and meta-analysis. Lung Cancer 74:89–97PubMedCrossRefGoogle Scholar
  27. 27.
    Sandler A, Yi J, Dahlberg S et al (2010) Treatment outcomes by tumor histology in Eastern Cooperative Group Study E4599 of bevacizumab with paclitaxel/carboplatin for advanced non-small cell lung cancer. J Thorac Oncol 5:1416–1423PubMedCrossRefGoogle Scholar
  28. 28.
    Mok TS, Hsia TC, Tsai CM et al (2011) Efficacy of bevacizumab with cisplatin and gemcitabine in Asian patients with advanced or recurrent non-squamous non-small cell lung cancer who have not received prior chemotherapy: a substudy of the Avastin in Lung trial. Asia Pac J Clin Oncol 7(Suppl 2):4–12PubMedCrossRefGoogle Scholar
  29. 29.
    Hurwitz HI, Douglas PS, Middleton JP et al (2013) Analysis of early hypertension and clinical outcome with bevacizumab: results from seven phase III studies. Oncologist 18:273–280PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Dowlati A, Gray R, Sandler AB, Schiller JH, Johnson DH (2008) Cell adhesion molecules, vascular endothelial growth factor, and basic fibroblast growth factor in patients with non-small cell lung cancer treated with chemotherapy with or without bevacizumab–an Eastern Cooperative Oncology Group Study. Clin Cancer Res 14:1407–1412PubMedCrossRefGoogle Scholar
  31. 31.
    Ciuleanu T, Brodowicz T, Zielinski C et al (2009) Maintenance pemetrexed plus best supportive care versus placebo plus best supportive care for non-small-cell lung cancer: a randomised, double-blind, phase 3 study. Lancet 374:1432–1440PubMedCrossRefGoogle Scholar
  32. 32.
    Paz-Ares LG, de Marinis F, Dediu M et al (2013) PARAMOUNT: final overall survival results of the phase III study of maintenance pemetrexed versus placebo immediately after induction treatment with pemetrexed plus cisplatin for advanced nonsquamous non–small-cell lung cancer. J Clin Oncol 31:2895–2902PubMedCrossRefGoogle Scholar
  33. 33.
    Barlesi F, Scherpereel A, Rittmeyer A et al (2013) Randomized phase III trial of maintenance bevacizumab with or without pemetrexed after first-line induction with bevacizumab, cisplatin, and pemetrexed in advanced nonsquamous non-small-cell lung cancer: AVAPERL (MO22089). J Clin Oncol 31:3004–3011PubMedCrossRefGoogle Scholar
  34. 34.
    Rittmeyer A, Gorbunova V, Vikström A (2013) Health-related quality of life in patients with advanced nonsquamous non-small-cell lung cancer receiving bevacizumab or bevacizumab-plus-pemetrexed maintenance therapy in AVAPERL (MO22089). J Thorac Oncol 8:1409–1416. doi: 10.097/JTO.0b013e3182a46bcf PubMedCrossRefGoogle Scholar
  35. 35.
    Socinski MA, Patel JD, Garon EB et al (2013) A phase III study of pemetrexed (Pem) plus carboplatin (Cb) plus bevacizumab (Bev) followed by maintenance pem plus bev versus paclitaxel (Pac) plus cb plus bev followed by maintenance bev in stage IIIb or IV nonsquamous non-small cell lung cancer (NS-NSCLC): overall and age group results. ASCO Meet Abstr 31:8004Google Scholar
  36. 36.
    Zinner R, Ross HJ, Weaver R et al (2013) Randomized, open-label, phase III study of pemetrexed plus carboplatin (PemC) followed by maintenance pemetrexed versus paclitaxel/carboplatin/bevacizumab (PCB) followed by maintenance bevacizumab in patients with advanced nonsquamous (NS) non-small cell lung cancer (NSCLC). ASCO Meet Abstr 31, LBA8003Google Scholar
  37. 37.
    NCCN Clinical practice guidelines in oncologyTM (2010) Non small cell lung cancer. V.1.2011. Accessed 10 Dec 2010. Accessed at http://www.nccn.org/professionals/physician_gls/PDF.nscl.pdf
  38. 38.
    Gridelli C, Bennouna J, de Castro J et al (2011) Randomized phase IIIb trial evaluating the continuation of bevacizumab beyond disease progression in patients with advanced non-squamous non-small-cell lung cancer after first-line treatment with bevacizumab plus platinum-based chemotherapy: treatment rationale and protocol dynamics of the AvaALL (MO22097) trial. Clin Lung Cancer 12:407–411PubMedCrossRefGoogle Scholar
  39. 39.
    Herbst RS, Ansari R, Bustin F et al (2011) Efficacy of bevacizumab plus erlotinib versus erlotinib alone in advanced non-small-cell lung cancer after failure of standard first-line chemotherapy (BeTa): a double-blind, placebo-controlled, phase 3 trial. Lancet 377:1846–1854PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Herbst RS, O’Neill VJ, Fehrenbacher L et al (2007) Phase II study of efficacy and safety of bevacizumab in combination with chemotherapy or erlotinib compared with chemotherapy alone for treatment of recurrent or refractory non–small-cell lung cancer. J Clin Oncol 25:4743–4750PubMedCrossRefGoogle Scholar
  41. 41.
    Camidge DR, Ballas MS, Dubey S et al (2010) A phase II, open-label study of ramucirumab (IMC-1121B), an IgG1 fully human monoclonal antibody (MAb) targeting VEGFR-2, in combination with paclitaxel and carboplatin as first-line therapy in patients (pts) with stage IIIb/IV non-small cell lung cancer (NSCLC). ASCO Meet Abstr 28:7588Google Scholar
  42. 42.
    Doebele RC, Spigel D, Tehfe M et al (2013) A phase 2 randomized open-label study of ramucirumab (IMC 1121B; RAM) in combination with first-line platinum-based chemotherapy in patients (pts) with recurrent or advanced non-small cell lung cancer (NSCLC): final results from non-squamous (NSQ) pts (NCT 01160744). J Thorac Oncol 8:MO06.8Google Scholar
  43. 43.
    Leighl NB, Raez LE, Besse B et al (2010) Multicenter, phase 2 study of vascular endothelial growth factor trap (aflibercept) in platinum- and erlotinib-resistant adenocarcinoma of the lung. J Thorac Oncol 5:1054–1059. doi: 10.97/JTO.0b013e3181e2f7fb PubMedCrossRefGoogle Scholar
  44. 44.
    Chen H, Modiano MR, Neal JW et al (2012) A phase II multicenter study of aflibercept (AFL) in combination with cisplatin (C) and pemetrexed (P) in patients with previously untreated advanced/metastatic nonsquamous non-small cell lung cancer (NSCLC). ASCO Meet Abstr 30:7541Google Scholar
  45. 45.
    Ramlau R, Gorbunova V, Ciuleanu TE et al (2012) Aflibercept and docetaxel versus docetaxel alone after platinum failure in patients with advanced or metastatic non-small-cell lung cancer: a randomized, controlled phase III trial. J Clin Oncol 30:3640–3647PubMedCrossRefGoogle Scholar
  46. 46.
    Rustin GJ, Bradley C, Galbraith S et al (2003) 5,6-dimethylxanthenone-4-acetic acid (DMXAA), a novel antivascular agent: phase I clinical and pharmacokinetic study. Br J Cancer 88:1160–1167PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    McKeage MJ, Von Pawel J, Reck M et al (2008) Randomised phase II study of ASA404 combined with carboplatin and paclitaxel in previously untreated advanced non-small cell lung cancer. Br J Cancer 99:2006–2012PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Lara PN, Douillard J-Y, Nakagawa K et al (2011) Randomized phase III placebo-controlled trial of carboplatin and paclitaxel with or without the vascular disrupting agent vadimezan (ASA404) in advanced non–small-cell lung cancer. J Clin Oncol 29:2965–2971PubMedCrossRefGoogle Scholar
  49. 49.
    Wilhelm SM, Carter C, Tang L et al (2004) BAY 43–9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 64:7099–7109PubMedCrossRefGoogle Scholar
  50. 50.
    Blumenschein GR, Gatzemeier U, Fossella F et al (2009) Phase II, multicenter, uncontrolled trial of single-agent sorafenib in patients with relapsed or refractory, advanced non small-cell lung cancer. J Clin Oncol 27:4274–4280PubMedCrossRefGoogle Scholar
  51. 51.
    Schiller JH, Flaherty KT, Redlinger M et al (2006) Sorafenib combined with carboplatin/paclitaxel for advanced non-small cell lung cancer: a phase I subset analysis. J Clin Oncol 24:7194CrossRefGoogle Scholar
  52. 52.
    Paz-Ares LG, Biesma B, Heigener D et al (2012) Phase III, randomized, double-blind, placebo-controlled trial of gemcitabine/cisplatin alone or with sorafenib for the first-line treatment of advanced, nonsquamous non-small-cell lung cancer. J Clin Oncol 30:3084–3092PubMedCrossRefGoogle Scholar
  53. 53.
    Scagliotti G, Novello S, von Pawel J et al (2010) Phase III study of carboplatin and paclitaxel alone or with sorafenib in advanced non-small-cell lung cancer. J Clin Oncol 28:1835–1842PubMedCrossRefGoogle Scholar
  54. 54.
    Nikolinakos P, Heymach JV (2008) The tyrosine kinase inhibitor cediranib for non-small cell lung cancer and other thoracic malignancies. J Thorac Oncol 3:131–134CrossRefGoogle Scholar
  55. 55.
    Laurie SA, Gauthier I, Arnold A et al (2008) Phase I and pharmacokinetic study of daily oral AZD2171, an inhibitor of vascular endothelial growth factor tyrosine kinases, in combination with carboplatin and paclitaxel in patients with advanced non-small-cell lung cancer: the National Cancer Institute of Canada clinical trials group. J Clin Oncol 26:1871–1878PubMedCrossRefGoogle Scholar
  56. 56.
    Goss GD, Arnold A, Shepherd FA et al (2010) Randomized, double-blind trial of carboplatin and paclitaxel with either daily oral cediranib or placebo in advanced non-small-cell lung cancer: NCIC clinical trials group BR24 study. J Clin Oncol 28:49–55PubMedCrossRefGoogle Scholar
  57. 57.
    Laurie SA, Solomon BJ, Seymour L, et al. (2014) Randomized, double-blind trial of carboplatin and paclitaxel with daily cedirinib or placebo in patients with advanced non-small cell lung cancer: NCIC Clinical Trials Group study BR29. Eur J Cancer 50:706–712Google Scholar
  58. 58.
    Dy GK, Mandrekar SJ, Nelson GD et al (2013) A Randomized phase II study of gemcitabine and carboplatin with or without cediranib as first line therapy in advanced non–small-cell lung cancer: North Central Cancer Treatment Group Study N0528. J Thorac Oncol 8:79–88. doi: 10.1097/JTO.0b013e318274a85d PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Polverino A, Coxon A, Starnes C et al (2006) AMG 706, an oral, multikinase inhibitor that selectively targets vascular endothelial growth factor, platelet-derived growth factor, and kit receptors, potently inhibits angiogenesis and induces regression in tumor xenografts. Cancer Res 66:8715–8721PubMedCrossRefGoogle Scholar
  60. 60.
    Blumenschein GR Jr, Kabbinavar F, Menon H et al (2011) A phase II, multicenter, open-label randomized study of motesanib or bevacizumab in combination with paclitaxel and carboplatin for advanced nonsquamous non-small-cell lung cancer. Ann Oncol 22:2057–2067PubMedCrossRefGoogle Scholar
  61. 61.
    Scagliotti GV, Vynnychenko I, Park K et al (2012) International, randomized, placebo-controlled, double-blind phase III study of motesanib plus carboplatin/paclitaxel in patients with advanced nonsquamous non-small-cell lung cancer: MONET1. J Clin Oncol 30:2829–2836PubMedCrossRefGoogle Scholar
  62. 62.
    Wedge SR, Ogilvie DJ, Dukes M et al (2002) ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. Cancer Res 62:4645–4655PubMedGoogle Scholar
  63. 63.
    Aisner J, Manola J, Dakhil SR, Stella PJ, Schiller JH (2011) Randomized phase II study of vandetanib (V), docetaxel (D), and carboplatin (C) followed by maintenance V or placebo (P) in patients with stage IIIb, IV, or recurrent non-small cell lung cancer (NSCLC): PrECOG PrE0501—update on maintenance treatment, progression-free survival (PFS), and overall survival (OS). J Clin Oncol 29:7560CrossRefGoogle Scholar
  64. 64.
    Heymach J, Paz-Ares L, De Braud F et al (2008) Randomized phase II study of vandetanib alone or with paclitaxel and carboplatin as first-line treatment for advanced non–small-cell lung cancer. J Clin Oncol 26:5407–5415PubMedCrossRefGoogle Scholar
  65. 65.
    Kumar R, Knick VB, Rudolph SK et al (2007) Pharmacokinetic-pharmacodynamic correlation from mouse to human with pazopanib, a multikinase angiogenesis inhibitor with potent antitumor and antiangiogenic activity. Mol Cancer Ther 6:2012–2021PubMedCrossRefGoogle Scholar
  66. 66.
    Scagliotti GV, Felip E, Besse B et al (2013) An open-label, multicenter, randomized, phase II study of pazopanib in combination with pemetrexed in first-line treatment of patients with advanced-stage non–small-cell lung cancer. J Thorac Oncol 8:1529–1537. doi: 10.097/JTO.0000000000000005 PubMedCrossRefGoogle Scholar
  67. 67.
    Choueiri TK (2008) Axitinib, a novel anti-angiogenic drug with promising activity in various solid tumors. Curr Opin Investig Drugs 9:658–671PubMedGoogle Scholar
  68. 68.
    Belani CP, Yamamoto N, Bondarenko I et al (2012) A randomized phase II study of axitinib in combination with pemetrexed/cisplatin (pem/cis) as first-line therapy for nonsquamous non-small cell lung cancer (NSCLC). ASCO Meet Abstr 30:7551Google Scholar
  69. 69.
    Wakelee HA, Lee JW, Hanna NH, Traynor AM, Carbone DP, Schiller JH (2012) A double-blind randomized discontinuation phase-II study of sorafenib (BAY 43–9006) in previously treated non-small-cell lung cancer patients: eastern cooperative oncology group study E2501. J Thorac Oncol 7:1574–1582PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Spigel DR, Burris HA, Greco FA et al (2011) Randomized, double-blind, placebo-controlled, phase II trial of sorafenib and erlotinib or erlotinib alone in previously treated advanced non-small-cell lung cancer. J Clin Oncol 29:2582–2589PubMedCrossRefGoogle Scholar
  71. 71.
    Molina JR, Dy GK, Foster NR et al (2011) A randomized phase II study of pemetrexed (PEM) with or without sorafenib (S) as second-line therapy in advanced non-small cell lung cancer (NSCLC) of nonsquamous histology: NCCTG N0626 study. J Clin Oncol 29:7513CrossRefGoogle Scholar
  72. 72.
    Heist RS, Wang X, Hodgson L et al (2014) CALGB 30704 (alliance): a randomized phase II study to assess the efficacy of pemetrexed or sunitinib or pemetrexed plus sunitinib in the second-line treatment of advanced non–small-cell lung cancer. J Thorac Oncol 9:214–221. doi: 10.1097/JTO.0000000000000071 PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Blumenschein GR Jr, Ciuleanu T, Robert F et al (2012) Sunitinib plus erlotinib for the treatment of advanced/metastatic non-small-cell lung cancer: a lead-in study. J Thorac Oncol 7:1406–1416PubMedCrossRefGoogle Scholar
  74. 74.
    Groen HJM, Socinski M, Grossi F et al (2010) Randomized phase ii study of sunitinib (SU) plus erlotinib (E) vs. Placebo (P) plus E for the treatment of metastatic non-small cell lung cancer (NSCLC). Ann Oncol 21:417PGoogle Scholar
  75. 75.
    Scagliotti GV, Krzakowski M, Szczesna A et al (2010) Sunitinib (SU) in combination with erlotinib (E) for the treatment of advanced/metastatic nonsmall cell lung cancer (NSCLC): a phase III study. Ann Oncol 21:LBA6CrossRefGoogle Scholar
  76. 76.
    Scagliotti GV, Krzakowski M, Szczesna A et al (2012) Sunitinib plus erlotinib versus placebo plus erlotinib in patients with previously treated advanced non-small-cell lung cancer: a phase III trial. J Clin Oncol 30:2070–2078PubMedCrossRefGoogle Scholar
  77. 77.
    De Boer RH, Arrieta O, Yang CH et al (2011) Vandetanib plus pemetrexed for the second-line treatment of advanced non-small-cell lung cancer: a randomized, double-blind phase III trial. J Clin Oncol 29:1067–1074PubMedCrossRefGoogle Scholar
  78. 78.
    Herbst RS, Sun Y, Eberhardt WE et al (2010) Vandetanib plus docetaxel versus docetaxel as second-line treatment for patients with advanced non-small-cell lung cancer (ZODIAC): a double-blind, randomised, phase 3 trial. Lancet Oncol 11:619–626PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Lee JS, Hirsh V, Park K et al (2012) Vandetanib Versus placebo in patients with advanced non-small-cell lung cancer after prior therapy with an epidermal growth factor receptor tyrosine kinase inhibitor: a randomized, double-blind phase III trial (ZEPHYR). J Clin Oncol 30:1114–1121PubMedCrossRefGoogle Scholar
  80. 80.
    Natale RB, Thongprasert S, Greco FA et al (2011) Phase III trial of vandetanib compared with erlotinib in patients with previously treated advanced non-small-cell lung cancer. J Clin Oncol 29:1059–1066PubMedCrossRefGoogle Scholar
  81. 81.
    Lee J, Hirsh V, Park K (2010) Vandetanib versus placebo in patients with advanced non-small cell lung cancer (NSCLC) after prior therapy with an EGFR tyrosine kinase inhibitor (TKI): a randomized, double-blind phase III trial (ZEPHYR). J Clin Oncol 28:7525CrossRefGoogle Scholar
  82. 82.
    Hilberg F, Roth GJ, Krssak M et al (2008) BIBF 1120: triple angiokinase inhibitor with sustained receptor blockade and good antitumor efficacy. Cancer Res 68:4774–4782PubMedCrossRefGoogle Scholar
  83. 83.
    Reck M, Kaiser R, Eschbach C et al (2011) A phase II double-blind study to investigate efficacy and safety of two doses of the triple angiokinase inhibitor BIBF 1120 in patients with relapsed advanced non-small-cell lung cancer. Ann Oncol 22:1374–1381PubMedCrossRefGoogle Scholar
  84. 84.
    Ellis PM, Kaiser R, Zhao Y, Stopfer P, Gyorffy S, Hanna N (2010) Phase I open-label study of continuous treatment with BIBF 1120, a triple angiokinase inhibitor, and pemetrexed in pretreated non-small cell lung cancer patients. Clin Cancer Res 16:2881–2889PubMedCrossRefGoogle Scholar
  85. 85.
    Hanna NH, Kaiser R, Sullivan RN et al (2013) Lume-lung 2: a multicenter, randomized, double-blind, phase III study of nintedanib plus pemetrexed versus placebo plus pemetrexed in patients with advanced nonsquamous non-small cell lung cancer (NSCLC) after failure of first-line chemotherapy. ASCO Meet Abstr 31:8034Google Scholar
  86. 86.
    Reck M, Kaiser R, Mellemgaard A et al (2014) Docetaxel plus nintedanib versus docetaxel plus placebo in patients with previously treated non-small-cell lung cancer (LUME-Lung 1): a phase 3, double-blind, randomised controlled trial. Lancet Oncol 15:143–155PubMedCrossRefGoogle Scholar
  87. 87.
    Gadgeel SM, Wozniak A, Edelman MJ et al (2009) Cediranib, a VEGF receptor 1, 2, and 3 inhibitor, and pemetrexed in patients (pts) with recurrent non-small cell lung cancer (NSCLC). ASCO Meet Abstr 27, e19007Google Scholar
  88. 88.
    Albert DH, Tapang P, Magoc TJ et al (2006) Preclinical activity of ABT-869, a multitargeted receptor tyrosine kinase inhibitor. Mol Cancer Ther 5:995–1006PubMedCrossRefGoogle Scholar
  89. 89.
    Tan E, Goss GD, Salgia R et al (2010) A phase 2 trial of linifanib treatment in non-small cell lung cancer (NSCLC) patients. Ann Oncol 21:416PGoogle Scholar
  90. 90.
    Shepherd FA, Giaccone G, Seymour L et al (2002) Prospective, randomized, double-blind, placebo-controlled trial of marimastat after response to first-line chemotherapy in patients with small-cell lung cancer: a trial of the National Cancer Institute of Canada-Clinical Trials Group and the European Organization for Research and Treatment of Cancer. J Clin Oncol 20:4434–4439PubMedCrossRefGoogle Scholar
  91. 91.
    Dy GK, Miller AA, Mandrekar SJ et al (2005) A phase II trial of imatinib (ST1571) in patients with c-kit expressing relapsed small-cell lung cancer: a CALGB and NCCTG study. Ann Oncol 16:1811–1816PubMedCrossRefGoogle Scholar
  92. 92.
    Johnson FM, Krug LM, Tran HT et al (2006) Phase I studies of imatinib mesylate combined with cisplatin and irinotecan in patients with small cell lung carcinoma. Cancer 106:366–374PubMedCrossRefGoogle Scholar
  93. 93.
    Langer CJ, Albert I, Kovacs P et al (2011) A randomized phase II study of carboplatin (C) and etoposide (E) with or without pan-BCL-2 antagonist obatoclax (Ob) in extensive-stage small cell lung cancer (ES-SCLC). ASCO Meet Abstr 29:7001Google Scholar
  94. 94.
    Lara PNJ, Chansky K, Davies AM et al (2006) Bortezomib (PS-341) in relapsed or refractory extensive stage small cell lung cancer: a Southwest Oncology Group phase II trial (S0327). J Thorac Oncol 1:996–1001PubMedCrossRefGoogle Scholar
  95. 95.
    Ellis PM, Shepherd FA, Laurie SA, et al. (2014) Brief report: NCIC CTG IND.190 phase I trial of dalotuzumab (MK-0646) in combination with cisplatin and etoposide in extensive stage small cell lung cancer (ES SCLC). J Thorac Oncol 9:410–413Google Scholar
  96. 96.
    Sattler M, Salgia R (2003) Molecular and cellular biology of small cell lung cancer. Semin Oncol 30:57–71PubMedCrossRefGoogle Scholar
  97. 97.
    Wistuba II, Gazdar AF, Minna JD (2001) Molecular genetics of small cell lung carcinoma. Semin Oncol 28:3–13PubMedCrossRefGoogle Scholar
  98. 98.
    Ready NE, Dudek AZ, Pang HH et al (2011) Cisplatin, irinotecan, and bevacizumab for untreated extensive-stage small-cell lung cancer: CALGB 30306, a phase II study. J Clin Oncol 29:4436–4441PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Horn L, Dahlberg SE, Sandler AB et al (2009) Phase II study of cisplatin plus etoposide and bevacizumab for previously untreated, extensive-stage small-cell lung cancer: eastern cooperative oncology group study E3501. J Clin Oncol 27:6006–6011PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Spigel DR, Townley PM, Waterhouse DM et al (2011) Randomized phase II study of bevacizumab in combination with chemotherapy in previously untreated extensive-stage small-cell lung cancer: results from the SALUTE trial. J Clin Oncol 29:2215–2222PubMedCrossRefGoogle Scholar
  101. 101.
    Arnold AM, Seymour L, Smylie M et al (2007) Phase II study of vandetanib or placebo in small-cell lung cancer patients after complete or partial response to induction chemotherapy with or without radiation therapy: National Cancer Institute of Canada Clinical Trials Group Study BR.20. J Clin Oncol 25:4278–4284PubMedCrossRefGoogle Scholar
  102. 102.
    Pujol JL, Breton JL, Gervais R et al (2007) Phase III double-blind, placebo-controlled study of thalidomide in extensive-disease small-cell lung cancer after response to chemotherapy: an intergroup study FNCLCC cleo04 IFCT 00–01. J Clin Oncol 25:3945–3951PubMedCrossRefGoogle Scholar
  103. 103.
    Lee S-M, Woll PJ, James LE et al (2007) A phase III randomised, double blind, placebo controlled trial of etoposide/carboplatin with or without thalidomide in advanced small cell lung cancer (SCLC): PRS-04. J Thorac Oncol 2:S306–S307. doi: 10.1097/01.JTO.0000283089.56099.79 CrossRefGoogle Scholar
  104. 104.
    Ellis PM, Jungnelius U, Zhang J, Fandi A, Beck R, Shepherd FA (2013) A phase I study of pomalidomide (CC-4047) in combination with cisplatin and etoposide in patients with extensive-stage small-cell lung cancer. J Thorac Oncol 8:423–428PubMedCrossRefGoogle Scholar
  105. 105.
    Han J, Lim KY, Kim HY et al (2011) Phase II study of sunitinib in patients with relapsed or refractory small cell lung cancer (SCLC). ASCO Meet Abstr 29:7084Google Scholar
  106. 106.
    Ready N, Pang H, Gu L et al (2013) Chemotherapy with or without maintenance sunitinib for untreated extensive-stage small cell lung cancer: a randomized, placebo controlled phase II study CALGB 30504 (ALLIANCE). ASCO Meet Abstr 31:7506Google Scholar
  107. 107.
    Gitlitz BJ, Glisson BS, Moon J, Reimers H, Gandara DR (2008) Sorafenib in patients with platinum (plat) treated extensive stage small cell lung cancer (E-SCLC): a SWOG (S0435) phase II trial. ASCO Meet Abstr 26:8039Google Scholar
  108. 108.
    Sharma N, Pennell NA, Halmos B, Ma PC, Dowlati A (2012) Phase II trial of sorafenib in conjunction with chemotherapy and as maintenance therapy in extensive-stage small cell lung cancer (SCLC): final results. ASCO Meet Abstr 30, e17563Google Scholar
  109. 109.
    Besse B, Mazieres J, Ribassin-Majed L et al (2013) Adjuvant pazopanib or placebo in resected stage I NSCLC patients: results of the NSCLC adjuvant randomized phase II trial (IFCT-0703) from the french collaborative intergroup. J Thorac Oncol 8(Suppl 2):MO08.2Google Scholar
  110. 110.
    Garon EB, Kabbinavar FF, Neidhart JA et al (2011) A randomized phase II trial of a vascular disrupting agent (VDA) fosbretabulin tromethamine (CA4P) with carboplatin (C), paclitaxel (P), and bevacizumab (B) in stage 3B/4 nonsquamous non-small cell lung cancer (NSCLC): analysis of safety and activity of the FALCON trial. ASCO Meet Abstr 29:7559Google Scholar
  111. 111.
    O’Dwyer PJ, Papadopoulos KP, Tolcher AW et al (2012) MGCD265, a multitargeted oral tyrosine kinase receptor inhibitor of Met and VEGFR, in combination with erlotinib in patients with advanced solid tumors. ASCO Meet Abstr 30, e13602Google Scholar
  112. 112.
    Beeram M, Patnaik A, Amaravadi RK et al (2012) MGCD265, a multitargeted oral tyrosine kinase receptor inhibitor of Met and VEGFR, in combination with docetaxel. ASCO Meet Abstr 30, e13604Google Scholar
  113. 113.
    Bahleda R, Felip E, Herbst RS et al (2008) Phase I multicenter trial of BMS-690514: safety, pharmacokinetic profile, biological effects, and early clinical evaluation in patients with advanced solid tumors and non-small cell lung cancer. ASCO Meet Abstr 26:2564Google Scholar
  114. 114.
    Bahleda R, Soria J, Harbison C et al (2009) Tumor regression and pharmacodynamic (PD) biomarker validation in non-small cell lung cancer (NSCLC) patients treated with the ErbB/VEGFR inhibitor BMS-690514. ASCO Meet Abstr 27:8098Google Scholar
  115. 115.
    Chow LQ, Laurie SA, Belani CP et al (2010) Phase I trial of BMS-690514 in combination with paclitaxel/carboplatin (PC) in patients with advanced or metastatic solid tumors. ASCO Meet Abstr 28:2547Google Scholar
  116. 116.
    Ratain MJ, Schwartz GK, Oza AM et al (2011) Brivanib (BMS-582664) in advanced solid tumors (AST): results of a phase II randomized discontinuation trial (RDT). ASCO Meet Abstr 29:3079Google Scholar
  117. 117.
    Altorki N, Lane ME, Bauer T et al (2010) Phase II proof-of-concept study of pazopanib monotherapy in treatment-naive patients with stage I/II resectable non-small-cell lung cancer. J Clin Oncol 28:3131–3137PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of OncologyMcMaster UniversityHamiltonCanada
  2. 2.Juravinski Cancer CentreHamiltonCanada

Personalised recommendations