Advertisement

Immune Therapy

  • Lysanne Lievense
  • Joachim Aerts
  • Joost HegmansEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 893)

Abstract

Lung cancer has long been considered an unsuitable target for immunotherapy due to its proposed immunoresistant properties. However, recent evidence has shown that anti-tumor immune responses can occur in lung cancer patients, paving the way for lung cancer as a novel target for immunotherapy. In order to take full advantage of the potential of immunotherapy, research is focusing on the presence and function of various immunological cell types in the tumor microenvironment. Immune cells which facilitate or inhibit antitumor responses have been identified and their prognostic value in lung cancer has been established. Knowledge regarding these pro- and anti-tumor immune cells and their mechanisms of action has facilitated the identification of numerous potential immunotherapeutic strategies and opportunities for intervention. A plethora of immunotherapeutic approaches is currently being developed and studied in lung cancer patients and phase 3 clinical trials are ongoing. Many different immunotherapies have shown promising clinical effects in patients with limited and advanced stage lung cancer, however, future years will have to tell whether immunotherapy will earn its place in the standard treatment of lung cancer.

Keywords

Cancer immunotherapy Tumor microenvironment Immunosuppressive cells Regulatory T cells Myeloid-derived suppressor cells Tumor-associated macrophages Tumor antigens Tumor vaccines Cellular immunotherapy Personalized medicine 

References

  1. 1.
    Couzin-Frankel J (2013) Breakthrough of the year 2013. Cancer immunotherapy. Science 342(6165):1432–1433PubMedCrossRefGoogle Scholar
  2. 2.
    Kantoff PW et al (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363(5):411–422PubMedCrossRefGoogle Scholar
  3. 3.
    Hodi FS et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Holzel M, Bovier A, Tuting T (2013) Plasticity of tumour and immune cells: a source of heterogeneity and a cause for therapy resistance? Nat Rev Cancer 13(5):365–376PubMedCrossRefGoogle Scholar
  5. 5.
    Tartour E, Zitvogel L (2013) Lung cancer: potential targets for immunotherapy. Lancet Respir Med 1:551–563PubMedCrossRefGoogle Scholar
  6. 6.
    Heuvers ME et al (2012) Patient-tailored modulation of the immune system may revolutionize future lung cancer treatment. BMC Cancer 12:580PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Becknell B, Caligiuri MA (2008) Natural killer cells in innate immunity and cancer. J Immunother 31(8):685–692PubMedCrossRefGoogle Scholar
  8. 8.
    Caligiuri MA (2008) Human natural killer cells. Blood 112(3):461–469PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Al-Shibli K et al (2009) The prognostic value of intraepithelial and stromal innate immune system cells in non-small cell lung carcinoma. Histopathology 55(3):301–312PubMedCrossRefGoogle Scholar
  10. 10.
    Rijavec M et al (2011) Natural killer T cells in pulmonary disorders. Respir Med 105(Suppl 1):S20–S25PubMedCrossRefGoogle Scholar
  11. 11.
    Shimizu T et al (2009) Activation of Valpha24NKT cells in malignant pleural effusion in patients with lung cancer. Oncol Rep 22(3):581–586PubMedCrossRefGoogle Scholar
  12. 12.
    Molling JW et al (2005) Peripheral blood IFN-gamma-secreting Valpha24+ Vbeta11+ NKT cell numbers are decreased in cancer patients independent of tumor type or tumor load. Int J Cancer 116(1):87–93PubMedCrossRefGoogle Scholar
  13. 13.
    Tahir SM et al (2001) Loss of IFN-gamma production by invariant NK T cells in advanced cancer. J Immunol 167(7):4046–4050PubMedCrossRefGoogle Scholar
  14. 14.
    O’Callaghan DS et al (2010) The role of inflammation in the pathogenesis of non-small cell lung cancer. J Thorac Oncol 5(12):2024–2036PubMedCrossRefGoogle Scholar
  15. 15.
    Dundar E et al (2008) The significance and relationship between mast cells and tumour angiogenesis in non-small cell lung carcinoma. J Int Med Res 36(1):88–95PubMedCrossRefGoogle Scholar
  16. 16.
    Stoyanov E et al (2012) Mast cells and histamine enhance the proliferation of non-small cell lung cancer cells. Lung Cancer 75(1):38–44PubMedCrossRefGoogle Scholar
  17. 17.
    Khazaie K et al (2011) The significant role of mast cells in cancer. Cancer Metastasis Rev 30(1):45–60PubMedCrossRefGoogle Scholar
  18. 18.
    Niczyporuk M et al (2012) A lack of correlation between mast cells, angiogenesis, and outcome in non-small cell lung cancer. Exp Lung Res 38(6):281–285PubMedCrossRefGoogle Scholar
  19. 19.
    Heijmans J et al (2012) Role of mast cells in colorectal cancer development, the jury is still out. Biochim Biophys Acta 1822(1):9–13PubMedCrossRefGoogle Scholar
  20. 20.
    Nechushtan H (2010) The complexity of the complicity of mast cells in cancer. Int J Biochem Cell Biol 42(5):551–554PubMedCrossRefGoogle Scholar
  21. 21.
    Sarraf KM et al (2009) Neutrophil/lymphocyte ratio and its association with survival after complete resection in non-small cell lung cancer. J Thorac Cardiovasc Surg 137(2):425–428PubMedCrossRefGoogle Scholar
  22. 22.
    Teramukai S et al (2009) Pretreatment neutrophil count as an independent prognostic factor in advanced non-small-cell lung cancer: an analysis of Japan Multinational Trial Organisation LC00-03. Eur J Cancer 45(11):1950–1958PubMedCrossRefGoogle Scholar
  23. 23.
    Tomita M et al (2011) Preoperative neutrophil to lymphocyte ratio as a prognostic predictor after curative resection for non-small cell lung cancer. Anticancer Res 31(9):2995–2998PubMedGoogle Scholar
  24. 24.
    Mantovani A (2009) The yin-yang of tumor-associated neutrophils. Cancer Cell 16(3):173–174PubMedCrossRefGoogle Scholar
  25. 25.
    Colotta F et al (2009) Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30(7):1073–1081PubMedCrossRefGoogle Scholar
  26. 26.
    Fridlender ZG et al (2009) Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 16(3):183–194PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Soehnlein O (2009) An elegant defense: how neutrophils shape the immune response. Trends Immunol 30(11):511–512PubMedCrossRefGoogle Scholar
  28. 28.
    Puga I et al (2012) B cell-helper neutrophils stimulate the diversification and production of immunoglobulin in the marginal zone of the spleen. Nat Immunol 13(2):170–180CrossRefGoogle Scholar
  29. 29.
    Yang D et al (2009) Alarmins link neutrophils and dendritic cells. Trends Immunol 30(11):531–537PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Ilie M et al (2011) Predictive clinical outcome of the intratumoral CD66b-positive neutrophil- to-CD8-positive T-cell ratio in patients with resectable nonsmall cell lung cancer. Cancer 118(6):1726–37Google Scholar
  31. 31.
    Gottlin EB et al (2011) The association of intratumoral germinal centers with early-stage non-small cell lung cancer. J Thorac Oncol 6(10):1687–1690PubMedCrossRefGoogle Scholar
  32. 32.
    Pelletier MP et al (2001) Prognostic markers in resectable non-small cell lung cancer: a multivariate analysis. Can J Surg 44(3):180–188PubMedPubMedCentralGoogle Scholar
  33. 33.
    Kazarian M, Laird-Offringa IA (2011) Small-cell lung cancer-associated autoantibodies: potential applications to cancer diagnosis, early detection, and therapy. Mol Cancer 10:33PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Mihn DC, Kim TY (2009) Various autoantibodies are found in small-cell lung cancer. Lung Cancer 64(2):250PubMedCrossRefGoogle Scholar
  35. 35.
    Nagashio R et al (2008) Detection of tumor-specific autoantibodies in sera of patients with lung cancer. Lung Cancer 62(3):364–373PubMedCrossRefGoogle Scholar
  36. 36.
    Amornsiripanitch N et al (2010) Complement factor H autoantibodies are associated with early stage NSCLC. Clin Cancer Res 16(12):3226–3231PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Andersen MH et al (2006) Cytotoxic T cells. J Invest Dermatol 126(1):32–41PubMedCrossRefGoogle Scholar
  38. 38.
    Hiraoka K et al (2006) Concurrent infiltration by CD8+ T cells and CD4+ T cells is a favourable prognostic factor in non-small-cell lung carcinoma. Br J Cancer 94(2):275–280PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    McCoy MJ et al (2012) Peripheral CD8(+) T cell proliferation is prognostic for patients with advanced thoracic malignancies. Cancer Immunol Immunother 62(3):529–39Google Scholar
  40. 40.
    Mori M et al (2000) Infiltration of CD8+ T cells in non-small cell lung cancer is associated with dedifferentiation of cancer cells, but not with prognosis. Tohoku J Exp Med 191(2):113–118PubMedCrossRefGoogle Scholar
  41. 41.
    Suzuki K et al (2011) 2011. Prognostic immune markers in non-small cell lung cancer. Clin Cancer Res 17(16):5247–56Google Scholar
  42. 42.
    Trojan A et al (2004) Immune activation status of CD8+ T cells infiltrating non-small cell lung cancer. Lung Cancer 44(2):143–147PubMedCrossRefGoogle Scholar
  43. 43.
    Wakabayashi O et al (2003) CD4+ T cells in cancer stroma, not CD8+ T cells in cancer cell nests, are associated with favorable prognosis in human non-small cell lung cancers. Cancer Sci 94(11):1003–1009PubMedCrossRefGoogle Scholar
  44. 44.
    Wherry EJ (2011) T cell exhaustion. Nat Immunol 12(6):492–499PubMedCrossRefGoogle Scholar
  45. 45.
    Kayser G et al (2012) Stromal CD4/CD25 positive T-cells are a strong and independent prognostic factor in non-small cell lung cancer patients, especially with adenocarcinomas. Lung Cancer 76(3):445–51Google Scholar
  46. 46.
    Ruffini E et al (2009) Clinical significance of tumor-infiltrating lymphocytes in lung neoplasms. Ann Thorac Surg 87(2):365–371, discussion 371-2PubMedCrossRefGoogle Scholar
  47. 47.
    Ni XY et al (2012) TGF-beta of lung cancer microenvironment upregulates B7H1 and GITRL expression in dendritic cells and is associated with regulatory T cell generation. Oncol Rep 28(2):615–621PubMedGoogle Scholar
  48. 48.
    Hawrylowicz CM, O’Garra A (2005) Potential role of interleukin-10-secreting regulatory T cells in allergy and asthma. Nat Rev Immunol 5(4):271–283PubMedCrossRefGoogle Scholar
  49. 49.
    Thornton AM, Shevach EM (1998) CD4 + CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 188(2):287–296PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Fu HY et al (2013) FOXP3 and TLR4 protein expression are correlated in non-small cell lung cancer: implications for tumor progression and escape. Acta Histochem 115(2):151–157PubMedCrossRefGoogle Scholar
  51. 51.
    Woo EY et al (2001) Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res 61(12):4766–4772PubMedGoogle Scholar
  52. 52.
    Erfani N et al (2012) Increase of regulatory T cells in metastatic stage and CTLA-4 over expression in lymphocytes of patients with non-small cell lung cancer (NSCLC). Lung Cancer 77(2):306–311PubMedCrossRefGoogle Scholar
  53. 53.
    Okita R et al (2005) CD4+ CD25+ regulatory T cells in the peripheral blood of patients with breast cancer and non-small cell lung cancer. Oncol Rep 14(5):1269–1273PubMedGoogle Scholar
  54. 54.
    Dimitrakopoulos FI et al (2011) Association of FOXP3 expression with non-small cell lung cancer. Anticancer Res 31(5):1677–1683PubMedGoogle Scholar
  55. 55.
    Zaynagetdinov R et al (2012) Epithelial nuclear factor-kappaB signaling promotes lung carcinogenesis via recruitment of regulatory T lymphocytes. Oncogene 31(26):3164–3176PubMedCrossRefGoogle Scholar
  56. 56.
    Tao H et al (2012) Prognostic potential of FOXP3 expression in non-small cell lung cancer cells combined with tumor-infiltrating regulatory T cells. Lung Cancer 75(1):95–101PubMedCrossRefGoogle Scholar
  57. 57.
    Li H et al (2011) Increased prevalence of regulatory T cells in the lung cancer microenvironment: a role of thymic stromal lymphopoietin. Cancer Immunol Immunother 60(11):1587–1596PubMedCrossRefGoogle Scholar
  58. 58.
    Sharma S et al (2005) Tumor cyclooxygenase-2/prostaglandin E2-dependent promotion of FOXP3 expression and CD4+ CD25+ T regulatory cell activities in lung cancer. Cancer Res 65(12):5211–5220PubMedCrossRefGoogle Scholar
  59. 59.
    Zou W (2006) Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 6(4):295–307PubMedCrossRefGoogle Scholar
  60. 60.
    Iwakura Y et al (2011) Functional specialization of interleukin-17 family members. Immunity 34(2):149–162PubMedCrossRefGoogle Scholar
  61. 61.
    Zou W, Restifo NP (2010) T(H)17 cells in tumour immunity and immunotherapy. Nat Rev Immunol 10(4):248–256PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Ye ZJ et al (2010) Generation and differentiation of IL-17-producing CD4+ T cells in malignant pleural effusion. J Immunol 185(10):6348–6354PubMedCrossRefGoogle Scholar
  63. 63.
    Li Y et al (2011) Effects of IL-17A on the occurrence of lung adenocarcinoma. Cancer Biol Ther 12(7):610–616PubMedCrossRefGoogle Scholar
  64. 64.
    Chen X et al (2010) Increased IL-17-producing cells correlate with poor survival and lymphangiogenesis in NSCLC patients. Lung Cancer 69(3):348–354PubMedCrossRefGoogle Scholar
  65. 65.
    Wilke CM et al (2011) Th17 cells in cancer: help or hindrance? Carcinogenesis 32(5):643–649PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Gallina G et al (2006) Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J Clin Invest 116(10):2777–2790PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Watanabe S et al (2008) Tumor-induced CD11b+ Gr-1+ myeloid cells suppress T cell sensitization in tumor-draining lymph nodes. J Immunol 181(5):3291–3300PubMedCrossRefGoogle Scholar
  68. 68.
    Lu T et al (2011) Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. J Clin Invest 121(10):4015–4029PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Serafini P et al (2008) Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Res 68(13):5439–5449PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Hoechst B et al (2009) Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology 50(3):799–807PubMedCrossRefGoogle Scholar
  71. 71.
    Li H et al (2009) Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1. J Immunol 182(1):240–249PubMedCrossRefGoogle Scholar
  72. 72.
    Nausch N et al (2008) Mononuclear myeloid-derived “suppressor” cells express RAE-1 and activate natural killer cells. Blood 112(10):4080–4089PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Cheng P et al (2008) Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J Exp Med 205(10):2235–2249PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Hoechst B et al (2008) A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology 135(1):234–243PubMedCrossRefGoogle Scholar
  75. 75.
    Pan PY et al (2010) Immune stimulatory receptor CD40 is required for T-cell suppression and T regulatory cell activation mediated by myeloid-derived suppressor cells in cancer. Cancer Res 70(1):99–108PubMedCrossRefGoogle Scholar
  76. 76.
    Finke J et al (2011) MDSC as a mechanism of tumor escape from sunitinib mediated anti-angiogenic therapy. Int Immunopharmacol 11(7):856–861PubMedCrossRefGoogle Scholar
  77. 77.
    Ostrand-Rosenberg S (2010) Myeloid-derived suppressor cells: more mechanisms for inhibiting antitumor immunity. Cancer Immunol Immunother 59(10):1593–1600PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Bronte V, Zanovello P (2005) Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol 5(8):641–654PubMedCrossRefGoogle Scholar
  79. 79.
    Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Rodriguez PC, Ochoa AC (2008) Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectives. Immunol Rev 222:180–191PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Youn JI, Gabrilovich DI (2010) The biology of myeloid-derived suppressor cells: the blessing and the curse of morphological and functional heterogeneity. Eur J Immunol 40(11):2969–2975PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Ostrand-Rosenberg S et al (2012) Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression. Semin Cancer Biol 22(4):275–81Google Scholar
  83. 83.
    Liu CY et al (2010) Population alterations of L-arginase- and inducible nitric oxide synthase-expressed CD11b+/CD14/CD15+/CD33+ myeloid-derived suppressor cells and CD8+ T lymphocytes in patients with advanced-stage non-small cell lung cancer. J Cancer Res Clin Oncol 136(1):35–45PubMedCrossRefGoogle Scholar
  84. 84.
    Bremnes RM et al (2011) The role of tumor-infiltrating immune cells and chronic inflammation at the tumor site on cancer development, progression, and prognosis: emphasis on non-small cell lung cancer. J Thorac Oncol 6(4):824–833PubMedCrossRefGoogle Scholar
  85. 85.
    Schmid MC, Varner JA (2010) Myeloid cells in the tumor microenvironment: modulation of tumor angiogenesis and tumor inflammation. J Oncol 2010:201026PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Lewis C, Murdoch C (2005) Macrophage responses to hypoxia: implications for tumor progression and anti-cancer therapies. Am J Pathol 167(3):627–635PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Dai F et al (2010) The number and microlocalization of tumor-associated immune cells are associated with patient’s survival time in non-small cell lung cancer. BMC Cancer 10:220PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Kawai O et al (2008) Predominant infiltration of macrophages and CD8(+) T Cells in cancer nests is a significant predictor of survival in stage IV nonsmall cell lung cancer. Cancer 113(6):1387–1395PubMedCrossRefGoogle Scholar
  89. 89.
    Ma J et al (2010) The M1 form of tumor-associated macrophages in non-small cell lung cancer is positively associated with survival time. BMC Cancer 10:112PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Ohri CM et al (2009) Macrophages within NSCLC tumour islets are predominantly of a cytotoxic M1 phenotype associated with extended survival. Eur Respir J 33(1):118–126PubMedCrossRefGoogle Scholar
  91. 91.
    Welsh TJ et al (2005) Macrophage and mast-cell invasion of tumor cell islets confers a marked survival advantage in non-small-cell lung cancer. J Clin Oncol 23(35):8959–8967PubMedCrossRefGoogle Scholar
  92. 92.
    Sautes-Fridman C et al (2011) Tumor microenvironment is multifaceted. Cancer Metastasis Rev 30(1):13–25PubMedCrossRefGoogle Scholar
  93. 93.
    Becker Y (1993) Dendritic cell activity against primary tumors: an overview. In Vivo 7(3):187–191PubMedGoogle Scholar
  94. 94.
    Mitra R, Singh S, Khar A (2003) Antitumour immune responses. Expert Rev Mol Med 5(3):1–19PubMedCrossRefGoogle Scholar
  95. 95.
    Kusmartsev S, Gabrilovich DI (2006) Effect of tumor-derived cytokines and growth factors on differentiation and immune suppressive features of myeloid cells in cancer. Cancer Metastasis Rev 25(3):323–331PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Pinzon-Charry A, Maxwell T, Lopez JA (2005) Dendritic cell dysfunction in cancer: a mechanism for immunosuppression. Immunol Cell Biol 83(5):451–461PubMedCrossRefGoogle Scholar
  97. 97.
    Shurin MR et al (2006) Intratumoral cytokines/chemokines/growth factors and tumor infiltrating dendritic cells: friends or enemies? Cancer Metastasis Rev 25(3):333–356PubMedCrossRefGoogle Scholar
  98. 98.
    Almand B et al (2000) Clinical significance of defective dendritic cell differentiation in cancer. Clin Cancer Res 6(5):1755–1766PubMedGoogle Scholar
  99. 99.
    Bergeron A et al (2006) Characterisation of dendritic cell subsets in lung cancer micro-environments. Eur Respir J 28(6):1170–1177PubMedCrossRefGoogle Scholar
  100. 100.
    Gabrilovich D (2004) Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 4(12):941–952PubMedCrossRefGoogle Scholar
  101. 101.
    Gabrilovich DI et al (1996) Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 2(10):1096–1103PubMedCrossRefGoogle Scholar
  102. 102.
    Laxmanan S et al (2005) Vascular endothelial growth factor impairs the functional ability of dendritic cells through Id pathways. Biochem Biophys Res Commun 334(1):193–198PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Menetrier-Caux C et al (1998) Inhibition of the differentiation of dendritic cells from CD34(+) progenitors by tumor cells: role of interleukin-6 and macrophage colony-stimulating factor. Blood 92(12):4778–4791PubMedGoogle Scholar
  104. 104.
    Steinman RM (1991) The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 9:271–296PubMedCrossRefGoogle Scholar
  105. 105.
    Dumitriu IE et al (2009) Human dendritic cells produce TGF-beta 1 under the influence of lung carcinoma cells and prime the differentiation of CD4 + CD25 + Foxp3+ regulatory T cells. J Immunol 182(5):2795–2807PubMedCrossRefGoogle Scholar
  106. 106.
    Mu CY et al (2011) High expression of PD-L1 in lung cancer may contribute to poor prognosis and tumor cells immune escape through suppressing tumor infiltrating dendritic cells maturation. Med Oncol 28(3):682–688PubMedCrossRefGoogle Scholar
  107. 107.
    Schneider T et al (2011) Non-small cell lung cancer induces an immunosuppressive phenotype of dendritic cells in tumor microenvironment by upregulating B7-H3. J Thorac Oncol 6(7):1162–1168PubMedCrossRefGoogle Scholar
  108. 108.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70PubMedCrossRefGoogle Scholar
  109. 109.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674PubMedCrossRefGoogle Scholar
  110. 110.
    Dieu-Nosjean MC et al (2008) Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J Clin Oncol 26(27):4410–4417PubMedCrossRefGoogle Scholar
  111. 111.
    Al-Shibli KI et al (2008) Prognostic effect of epithelial and stromal lymphocyte infiltration in non-small cell lung cancer. Clin Cancer Res 14(16):5220–5227PubMedCrossRefGoogle Scholar
  112. 112.
    Ito N et al (2005) Prognostic significance of T helper 1 and 2 and T cytotoxic 1 and 2 cells in patients with non-small cell lung cancer. Anticancer Res 25(3B):2027–2031PubMedGoogle Scholar
  113. 113.
    Petersen RP et al (2006) Tumor infiltrating Foxp3+ regulatory T-cells are associated with recurrence in pathologic stage I NSCLC patients. Cancer 107(12):2866–2872PubMedCrossRefGoogle Scholar
  114. 114.
    Shimizu K et al (2010) Tumor-infiltrating Foxp3+ regulatory T cells are correlated with cyclooxygenase-2 expression and are associated with recurrence in resected non-small cell lung cancer. J Thorac Oncol 5(5):585–590PubMedCrossRefGoogle Scholar
  115. 115.
    Fridman WH et al (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12(4):298–306PubMedCrossRefGoogle Scholar
  116. 116.
    Bindea G et al (2013) Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39(4):782–795PubMedCrossRefGoogle Scholar
  117. 117.
    Ruffell B, Affara NI, Coussens LM (2012) Differential macrophage programming in the tumor microenvironment. Trends Immunol 33(3):119–126PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Escribese MM, Casas M, Corbi AL (2012) Influence of low oxygen tensions on macrophage polarization. Immunobiology 217(12):1233–1240PubMedCrossRefGoogle Scholar
  119. 119.
    Lewis CE, Hughes R (2007) Inflammation and breast cancer. Microenvironmental factors regulating macrophage function in breast tumours: hypoxia and angiopoietin-2. Breast Cancer Res 9(3):209PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    White JR et al (2004) Genetic amplification of the transcriptional response to hypoxia as a novel means of identifying regulators of angiogenesis. Genomics 83(1):1–8PubMedCrossRefGoogle Scholar
  121. 121.
    Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331(6024):1565–1570PubMedCrossRefGoogle Scholar
  122. 122.
    Ruckdeschel JC et al (1972) Postoperative empyema improves survival in lung cancer. Documentation and analysis of a natural experiment. N Engl J Med 287(20):1013–1017PubMedCrossRefGoogle Scholar
  123. 123.
    McKneally MF, Maver C, Kausel HW (1976) Regional immunotherapy of lung cancer with intrapleural B.C.G. Lancet 1(7956):377–379PubMedCrossRefGoogle Scholar
  124. 124.
    Giaccone G et al (2005) Phase III study of adjuvant vaccination with Bec2/bacille Calmette-Guerin in responding patients with limited-disease small-cell lung cancer (European Organisation for Research and Treatment of Cancer 08971-08971B; Silva Study). J Clin Oncol 23(28):6854–6864PubMedCrossRefGoogle Scholar
  125. 125.
    Malmstrom PU et al (1999) 5-year follow-up of a randomized prospective study comparing mitomycin C and bacillus Calmette-Guerin in patients with superficial bladder carcinoma. Swedish-Norwegian Bladder Cancer Study Group. J Urol 161(4):1124–1127PubMedCrossRefGoogle Scholar
  126. 126.
    O’Brien ME et al (2000) A randomized phase II study of SRL172 (Mycobacterium vaccae) combined with chemotherapy in patients with advanced inoperable non-small-cell lung cancer and mesothelioma. Br J Cancer 83(7):853–857PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    O’Brien ME et al (2004) SRL172 (killed Mycobacterium vaccae) in addition to standard chemotherapy improves quality of life without affecting survival, in patients with advanced non-small-cell lung cancer: phase III results. Ann Oncol 15(6):906–914PubMedCrossRefGoogle Scholar
  128. 128.
    Grange JM et al (2008) The use of mycobacterial adjuvant-based agents for immunotherapy of cancer. Vaccine 26(39):4984–4990PubMedCrossRefGoogle Scholar
  129. 129.
    Droemann D et al (2005) Human lung cancer cells express functionally active Toll-like receptor 9. Respir Res 6:1PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Manegold C et al (2012) A phase III randomized study of gemcitabine and cisplatin with or without PF-3512676 (TLR9 agonist) as first-line treatment of advanced non-small-cell lung cancer. Ann Oncol 23(1):72–77PubMedCrossRefGoogle Scholar
  131. 131.
    Hirsh V et al (2011) Randomized phase III trial of paclitaxel/carboplatin with or without PF-3512676 (Toll-like receptor 9 agonist) as first-line treatment for advanced non-small-cell lung cancer. J Clin Oncol 29(19):2667–2674PubMedCrossRefGoogle Scholar
  132. 132.
    Perret R et al (2013) Adjuvants that improve the ratio of antigen-specific effector to regulatory T cells enhance tumor immunity. Cancer Res 73(22):6597–6608PubMedCrossRefGoogle Scholar
  133. 133.
    Ettinger DS, Harwood K (1988) Phase II study of recombinant beta interferon in patients with advanced non-small-cell lung carcinoma. Med Pediatr Oncol 16(1):30–32PubMedCrossRefGoogle Scholar
  134. 134.
    Olesen BK et al (1987) Recombinant interferon A (IFL-rA) therapy of small cell and squamous cell carcinoma of the lung. A phase II study. Eur J Cancer Clin Oncol 23(7):987–989PubMedCrossRefGoogle Scholar
  135. 135.
    Jansen RL et al (1992) Interleukin-2 and interferon-alpha in the treatment of patients with advanced non-small-cell lung cancer. J Immunother (1991) 12(1):70–73CrossRefGoogle Scholar
  136. 136.
    Jett JR et al (1994) Phase III trial of recombinant interferon gamma in complete responders with small-cell lung cancer. J Clin Oncol 12(11):2321–2326PubMedCrossRefGoogle Scholar
  137. 137.
    Mattson K et al (1991) Recombinant interferon gamma treatment in non-small cell lung cancer. Antitumour effect and cardiotoxicity. Acta Oncol 30(5):607–610PubMedCrossRefGoogle Scholar
  138. 138.
    van Zandwijk N et al (1997) Role of recombinant interferon-gamma maintenance in responding patients with small cell lung cancer. A randomised phase III study of the EORTC Lung Cancer Cooperative Group. Eur J Cancer 33(11):1759–1766PubMedCrossRefGoogle Scholar
  139. 139.
    Schiller JH, Morgan-Ihrig C, Levitt ML (1995) Concomitant administration of interleukin-2 plus tumor necrosis factor in advanced non-small cell lung cancer. Am J Clin Oncol 18(1):47–51PubMedCrossRefGoogle Scholar
  140. 140.
    Timmer-Bonte JN et al (2005) Prevention of chemotherapy-induced febrile neutropenia by prophylactic antibiotics plus or minus granulocyte colony-stimulating factor in small-cell lung cancer: a Dutch Randomized Phase III Study. J Clin Oncol 23(31):7974–7984PubMedCrossRefGoogle Scholar
  141. 141.
    Timmer-Bonte JN et al (2008) Prophylactic G-CSF and antibiotics enable a significant dose-escalation of triplet-chemotherapy in non-small cell lung cancer. Lung Cancer 60(2):222–230PubMedCrossRefGoogle Scholar
  142. 142.
    Spadaro M et al (2008) Lactoferrin, a major defense protein of innate immunity, is a novel maturation factor for human dendritic cells. FASEB J 22(8):2747–2757PubMedCrossRefGoogle Scholar
  143. 143.
    Parikh PM et al (2011) Randomized, double-blind, placebo-controlled phase II study of single-agent oral talactoferrin in patients with locally advanced or metastatic non-small-cell lung cancer that progressed after chemotherapy. J Clin Oncol 29(31):4129–4136PubMedCrossRefGoogle Scholar
  144. 144.
    Ramalingam S et al (2013) Talactoferrin alfa versus placebo in patients with refractory advanced non-small-cell lung cancer (FORTIS-M trial). Ann Oncol 24(11):2875–2880PubMedCrossRefGoogle Scholar
  145. 145.
    Pirker R (2013) EGFR-directed monoclonal antibodies in non-small cell lung cancer. Target Oncol 8(1):47–53PubMedCrossRefGoogle Scholar
  146. 146.
    Mazieres J et al (2013) Lung cancer that harbors an HER2 mutation: epidemiologic characteristics and therapeutic perspectives. J Clin Oncol 31(16):1997–2003PubMedCrossRefGoogle Scholar
  147. 147.
    Arnould L et al (2006) Trastuzumab-based treatment of HER2-positive breast cancer: an antibody-dependent cellular cytotoxicity mechanism? Br J Cancer 94(2):259–267PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Hassan R, Ho M (2008) Mesothelin targeted cancer immunotherapy. Eur J Cancer 44(1):46–53PubMedCrossRefGoogle Scholar
  149. 149.
    Hassan R et al (2010) Phase I clinical trial of the chimeric anti-mesothelin monoclonal antibody MORAb-009 in patients with mesothelin-expressing cancers. Clin Cancer Res 16(24):6132–6138PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Cui J et al (2013) The efficacy of bevacizumab compared with other targeted drugs for patients with advanced NSCLC: a meta-analysis from 30 randomized controlled clinical trials. PLoS One 8(4), e62038PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Mansfield AS et al (2013) The immunomodulatory effects of bevacizumab on systemic immunity in patients with metastatic melanoma. Oncoimmunology 2(5), e24436PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Aerts JG, Hegmans JP (2013) Tumor-specific cytotoxic T cells are crucial for efficacy of immunomodulatory antibodies in patients with lung cancer. Cancer Res 73(8):2381–2388PubMedCrossRefGoogle Scholar
  154. 154.
    Robert C et al (2011) Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364(26):2517–2526PubMedCrossRefGoogle Scholar
  155. 155.
    Lynch TJ et al (2012) Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study. J Clin Oncol 30(17):2046–2054PubMedCrossRefGoogle Scholar
  156. 156.
    Calabro L et al (2013) Tremelimumab for patients with chemotherapy-resistant advanced malignant mesothelioma: an open-label, single-arm, phase 2 trial. Lancet Oncol 14(11):1104–1111PubMedCrossRefGoogle Scholar
  157. 157.
    Zhang Y et al (2010) Programmed death-1 upregulation is correlated with dysfunction of tumor-infiltrating CD8+ T lymphocytes in human non-small cell lung cancer. Cell Mol Immunol 7(5):389–395PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Topalian SL et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366(26):2443–2454PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Brahmer JR et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366(26):2455–2465PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Lievense LA, Hegmans JP, Aerts JG (2014) Biomarkers for immune checkpoint inhibitors. Lancet Oncol 15(1), e1PubMedCrossRefGoogle Scholar
  161. 161.
    van der Bruggen P et al (1991) A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254(5038):1643–1647PubMedCrossRefGoogle Scholar
  162. 162.
    Jang SJ et al (2001) Activation of melanoma antigen tumor antigens occurs early in lung carcinogenesis. Cancer Res 61(21):7959–7963PubMedGoogle Scholar
  163. 163.
    Thomas A, Hassan R (2012) Immunotherapies for non-small-cell lung cancer and mesothelioma. Lancet Oncol 13(7):e301–e310PubMedCrossRefGoogle Scholar
  164. 164.
    Bolli M et al (2002) Tissue microarray evaluation of Melanoma antigen E (MAGE) tumor-associated antigen expression: potential indications for specific immunotherapy and prognostic relevance in squamous cell lung carcinoma. Ann Surg 236(6):785–793, discussion 793PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Gure AO et al (2005) Cancer-testis genes are coordinately expressed and are markers of poor outcome in non-small cell lung cancer. Clin Cancer Res 11(22):8055–8062PubMedCrossRefGoogle Scholar
  166. 166.
    Vansteenkiste J et al (2013) Adjuvant MAGE-A3 immunotherapy in resected non-small-cell lung cancer: Phase II Randomized Study Results. J Clin Oncol 31(19):2396–2403PubMedCrossRefGoogle Scholar
  167. 167.
    Garcia B et al (2008) Effective inhibition of the epidermal growth factor/epidermal growth factor receptor binding by anti-epidermal growth factor antibodies is related to better survival in advanced non-small-cell lung cancer patients treated with the epidermal growth factor cancer vaccine. Clin Cancer Res 14(3):840–846PubMedCrossRefGoogle Scholar
  168. 168.
    Rodriguez PC et al (2011) Safety, immunogenicity and preliminary efficacy of multiple-site vaccination with an Epidermal Growth Factor (EGF) based cancer vaccine in advanced non small cell lung cancer (NSCLC) patients. J Immune Based Ther Vaccines 9:7PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Krug LM et al (2010) WT1 peptide vaccinations induce CD4 and CD8 T cell immune responses in patients with mesothelioma and non-small cell lung cancer. Cancer Immunol Immunother 59(10):1467–1479PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Kim NW et al (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266(5193):2011–2015PubMedCrossRefGoogle Scholar
  171. 171.
    Fernandez-Garcia I, Ortiz-de-Solorzano C, Montuenga LM (2008) Telomeres and telomerase in lung cancer. J Thorac Oncol 3(10):1085–1088PubMedCrossRefGoogle Scholar
  172. 172.
    Kyte JA (2009) Cancer vaccination with telomerase peptide GV1001. Expert Opin Investig Drugs 18(5):687–694PubMedCrossRefGoogle Scholar
  173. 173.
    Brunsvig PF et al (2011) Telomerase peptide vaccination in NSCLC: a phase II trial in stage III patients vaccinated after chemoradiotherapy and an 8-year update on a phase I/II trial. Clin Cancer Res 17(21):6847–6857PubMedCrossRefGoogle Scholar
  174. 174.
    Henriksen-Lacey M et al (2011) Liposomal vaccine delivery systems. Expert Opin Drug Deliv 8(4):505–519PubMedCrossRefGoogle Scholar
  175. 175.
    Sangha R, Butts C (2007) L-BLP25: a peptide vaccine strategy in non small cell lung cancer. Clin Cancer Res 13(15 Pt 2):s4652–s4654PubMedCrossRefGoogle Scholar
  176. 176.
    Decoster L, Wauters I, Vansteenkiste JF (2012) Vaccination therapy for non-small-cell lung cancer: review of agents in phase III development. Ann Oncol 23(6):1387–1393PubMedCrossRefGoogle Scholar
  177. 177.
    Butts C et al (2005) Randomized phase IIB trial of BLP25 liposome vaccine in stage IIIB and IV non-small-cell lung cancer. J Clin Oncol 23(27):6674–6681PubMedCrossRefGoogle Scholar
  178. 178.
    Kroemer G, Zitvogel L, Galluzzi L (2013) Victories and deceptions in tumor immunology: Stimuvax. Oncoimmunology 2(1), e23687PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Ramlau R et al (2008) A phase II study of Tg4010 (Mva-Muc1-Il2) in association with chemotherapy in patients with stage III/IV non-small cell lung cancer. J Thorac Oncol 3(7):735–744PubMedCrossRefGoogle Scholar
  180. 180.
    Quoix E et al (2011) Therapeutic vaccination with TG4010 and first-line chemotherapy in advanced non-small-cell lung cancer: a controlled phase 2B trial. Lancet Oncol 12(12):1125–1133PubMedCrossRefGoogle Scholar
  181. 181.
    Thomas AM et al (2004) Mesothelin-specific CD8(+) T cell responses provide evidence of in vivo cross-priming by antigen-presenting cells in vaccinated pancreatic cancer patients. J Exp Med 200(3):297–306PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Le DT et al (2012) A live-attenuated Listeria vaccine (ANZ-100) and a live-attenuated Listeria vaccine expressing mesothelin (CRS-207) for advanced cancers: phase I studies of safety and immune induction. Clin Cancer Res 18(3):858–868PubMedCrossRefGoogle Scholar
  183. 183.
    Kochenderfer JN, Gress RE (2007) A comparison and critical analysis of preclinical anticancer vaccination strategies. Exp Biol Med (Maywood) 232(9):1130–1141CrossRefGoogle Scholar
  184. 184.
    Nemunaitis J et al (2004) Granulocyte-macrophage colony-stimulating factor gene-modified autologous tumor vaccines in non-small-cell lung cancer. J Natl Cancer Inst 96(4):326–331PubMedCrossRefGoogle Scholar
  185. 185.
    Nemunaitis J et al (2006) Phase 1/2 trial of autologous tumor mixed with an allogeneic GVAX vaccine in advanced-stage non-small-cell lung cancer. Cancer Gene Ther 13(6):555–562PubMedCrossRefGoogle Scholar
  186. 186.
    Ikushima H, Miyazono K (2010) TGFbeta signalling: a complex web in cancer progression. Nat Rev Cancer 10(6):415–424PubMedCrossRefGoogle Scholar
  187. 187.
    Kong F et al (1999) Plasma transforming growth factor-beta1 level before radiotherapy correlates with long term outcome of patients with lung carcinoma. Cancer 86(9):1712–1719PubMedCrossRefGoogle Scholar
  188. 188.
    Nemunaitis J et al (2006) Phase II study of belagenpumatucel-L, a transforming growth factor beta-2 antisense gene-modified allogeneic tumor cell vaccine in non-small-cell lung cancer. J Clin Oncol 24(29):4721–4730PubMedCrossRefGoogle Scholar
  189. 189.
    Ballen K, Stewart FM (1997) Adoptive immunotherapy. Curr Opin Oncol 9(6):579–583PubMedCrossRefGoogle Scholar
  190. 190.
    Restifo NP, Dudley ME, Rosenberg SA (2012) Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 12(4):269–281PubMedCrossRefGoogle Scholar
  191. 191.
    Zheng YW et al (2013) Current adoptive immunotherapy in non-small cell lung cancer and potential influence of therapy outcome. Cancer Invest 31(3):197–205PubMedCrossRefGoogle Scholar
  192. 192.
    Perroud MW Jr et al (2011) Mature autologous dendritic cell vaccines in advanced non-small cell lung cancer: a phase I pilot study. J Exp Clin Cancer Res 30:65PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Wang K et al (2009) An autologous therapeutic dendritic cell vaccine transfected with total lung carcinoma RNA stimulates cytotoxic T lymphocyte responses against non-small cell lung cancer. Immunol Invest 38(7):665–680PubMedCrossRefGoogle Scholar
  194. 194.
    Zhou Q et al (2008) A dendritic cell-based tumour vaccine for lung cancer: full-length XAGE-1b protein-pulsed dendritic cells induce specific cytotoxic T lymphocytes in vitro. Clin Exp Immunol 153(3):392–400PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Hegmans JP et al (2010) Consolidative dendritic cell-based immunotherapy elicits cytotoxicity against malignant mesothelioma. Am J Respir Crit Care Med 181(12):1383–1390PubMedCrossRefGoogle Scholar
  196. 196.
    Kimura H, Yamaguchi Y (1995) Adjuvant immunotherapy with interleukin 2 and lymphokine-activated killer cells after noncurative resection of primary lung cancer. Lung Cancer 13(1):31–44PubMedCrossRefGoogle Scholar
  197. 197.
    Kimura H, Yamaguchi Y (1997) A phase III randomized study of interleukin-2 lymphokine-activated killer cell immunotherapy combined with chemotherapy or radiotherapy after curative or noncurative resection of primary lung carcinoma. Cancer 80(1):42–49PubMedCrossRefGoogle Scholar
  198. 198.
    Hontscha C et al (2011) Clinical trials on CIK cells: first report of the international registry on CIK cells (IRCC). J Cancer Res Clin Oncol 137(2):305–310PubMedCrossRefGoogle Scholar
  199. 199.
    Hui KM (2012) CIK cells–current status, clinical perspectives and future prospects–the good news. Expert Opin Biol Ther 12(6):659–661PubMedCrossRefGoogle Scholar
  200. 200.
    Li R et al (2012) Autologous cytokine-induced killer cell immunotherapy in lung cancer: a phase II clinical study. Cancer Immunol Immunother 61(11):2125–2133PubMedCrossRefGoogle Scholar
  201. 201.
    Iwai K et al (2012) Extended survival observed in adoptive activated T lymphocyte immunotherapy for advanced lung cancer: results of a multicenter historical cohort study. Cancer Immunol Immunother 61(10):1781–1790PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Nakajima J et al (2010) A phase I study of adoptive immunotherapy for recurrent non-small-cell lung cancer patients with autologous gammadelta T cells. Eur J Cardiothorac Surg 37(5):1191–1197PubMedCrossRefGoogle Scholar
  203. 203.
    Sakamoto M et al (2011) Adoptive immunotherapy for advanced non-small cell lung cancer using zoledronate-expanded gammadeltaTcells: a phase I clinical study. J Immunother 34(2):202–211PubMedCrossRefGoogle Scholar
  204. 204.
    Iliopoulou EG et al (2010) A phase I trial of adoptive transfer of allogeneic natural killer cells in patients with advanced non-small cell lung cancer. Cancer Immunol Immunother 59(12):1781–1789PubMedCrossRefGoogle Scholar
  205. 205.
    Dhodapkar MV, Richter J (2011) Harnessing natural killer T (NKT) cells in human myeloma: progress and challenges. Clin Immunol 140(2):160–166PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Motohashi S, Nakayama T (2009) Natural killer T cell-mediated immunotherapy for malignant diseases. Front Biosci (Schol Ed) 1:108–116CrossRefGoogle Scholar
  207. 207.
    Wolchok JD et al (2009) Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res 15(23):7412–7420PubMedCrossRefGoogle Scholar
  208. 208.
    Cornelissen R et al (2012) New roads open up for implementing immunotherapy in mesothelioma. Clin Dev Immunol 2012:927240PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Hegmans JP, Aerts JG (2013) Immunological profiling as a means to invigorate personalized cancer therapy. Oncoimmunology 2(8), e25236PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Kershaw MH et al (2013) Enhancing immunotherapy using chemotherapy and radiation to modify the tumor microenvironment. Oncoimmunology 2(9), e25962PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Galluzzi L et al (2012) The secret ally: immunostimulation by anticancer drugs. Nat Rev Drug Discov 11(3):215–233PubMedCrossRefGoogle Scholar
  212. 212.
    Ko HJ et al (2007) A combination of chemoimmunotherapies can efficiently break self-tolerance and induce antitumor immunity in a tolerogenic murine tumor model. Cancer Res 67(15):7477–7486PubMedCrossRefGoogle Scholar
  213. 213.
    Suzuki E et al (2005) Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin Cancer Res 11(18):6713–6721PubMedCrossRefGoogle Scholar
  214. 214.
    Fridlender ZG et al (2010) Chemotherapy delivered after viral immunogene therapy augments antitumor efficacy via multiple immune-mediated mechanisms. Mol Ther 18(11):1947–1959PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    Nowak AK, Robinson BW, Lake RA (2003) Synergy between chemotherapy and immunotherapy in the treatment of established murine solid tumors. Cancer Res 63(15):4490–4496PubMedGoogle Scholar
  216. 216.
    Belani CP et al (2013) Phase 2 trial of erlotinib with or without PF-3512676 (CPG 7909, a Toll-like receptor 9 agonist) in patients with advanced recurrent EGFR-positive non-small cell lung cancer. Cancer Biol Ther 14(7):557–563PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Yamada K et al (2010) Phase I study of TLR9 agonist PF-3512676 in combination with carboplatin and paclitaxel in patients with advanced non-small-cell lung cancer. Cancer Sci 101(1):188–195PubMedCrossRefGoogle Scholar
  218. 218.
    Wang YY et al (2011) The variation of CD4+ CD25+ regulatory T cells in the periphery blood and tumor microenvironment of non-small cell lung cancer patients and the downregulation effects induced by CpG ODN. Target Oncol 6(3):147–154PubMedCrossRefGoogle Scholar
  219. 219.
    Bottomley A et al (2008) Symptom and quality of life results of an international randomised phase III study of adjuvant vaccination with Bec2/BCG in responding patients with limited disease small-cell lung cancer. Eur J Cancer 44(15):2178–2184PubMedCrossRefGoogle Scholar
  220. 220.
    Gupta P et al (2008) Targeted combinatorial therapy of non-small cell lung carcinoma using a GST-fusion protein of full-length or truncated MDA-7/IL-24 with Tarceva. J Cell Physiol 215(3):827–836PubMedCrossRefGoogle Scholar
  221. 221.
    Galustian C, Dalgleish A (2009) Lenalidomide: a novel anticancer drug with multiple modalities. Expert Opin Pharmacother 10(1):125–133PubMedCrossRefGoogle Scholar
  222. 222.
    Elkinson S, McCormack PL (2013) Pomalidomide: first global approval. Drugs 73(6):595–604PubMedCrossRefGoogle Scholar
  223. 223.
    Bass KK, Mastrangelo MJ (1998) Immunopotentiation with low-dose cyclophosphamide in the active specific immunotherapy of cancer. Cancer Immunol Immunother 47(1):1–12PubMedCrossRefGoogle Scholar
  224. 224.
    Ghiringhelli F et al (2007) Metronomic cyclophosphamide regimen selectively depletes CD4+ CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother 56(5):641–648PubMedCrossRefGoogle Scholar
  225. 225.
    Kawai M et al (2005) Inhibitory and stimulatory effects of cyclosporine A on the development of regulatory T cells in vivo. Transplantation 79(9):1073–1077PubMedCrossRefGoogle Scholar
  226. 226.
    Litzinger MT et al (2007) IL-2 immunotoxin denileukin diftitox reduces regulatory T cells and enhances vaccine-mediated T-cell immunity. Blood 110(9):3192–3201PubMedPubMedCentralCrossRefGoogle Scholar
  227. 227.
    Hayes TG et al (2006) Phase I trial of oral talactoferrin alfa in refractory solid tumors. Invest New Drugs 24(3):233–240PubMedCrossRefGoogle Scholar
  228. 228.
    Germano G et al (2013) Role of macrophage targeting in the antitumor activity of trabectedin. Cancer Cell 23(2):249–262PubMedCrossRefGoogle Scholar
  229. 229.
    Hoang T et al (2012) Randomized phase III study of thoracic radiation in combination with paclitaxel and carboplatin with or without thalidomide in patients with stage III non-small-cell lung cancer: the ECOG 3598 study. J Clin Oncol 30(6):616–622PubMedPubMedCentralCrossRefGoogle Scholar
  230. 230.
    Young RJ et al (2012) Analysis of circulating angiogenic biomarkers from patients in two phase III trials in lung cancer of chemotherapy alone or chemotherapy and thalidomide. Br J Cancer 106(6):1153–1159PubMedPubMedCentralCrossRefGoogle Scholar
  231. 231.
    Kruijtzer CM et al (2002) Phase II and pharmacologic study of weekly oral paclitaxel plus cyclosporine in patients with advanced non-small-cell lung cancer. J Clin Oncol 20(23):4508–4516PubMedCrossRefGoogle Scholar
  232. 232.
    Gerena-Lewis M et al (2009) A Phase II trial of Denileukin Diftitox in patients with previously treated advanced non-small cell lung cancer. Am J Clin Oncol 32(3):269–273PubMedCrossRefGoogle Scholar
  233. 233.
    Digumarti R et al (2011) A randomized, double-blind, placebo-controlled, phase II study of oral talactoferrin in combination with carboplatin and paclitaxel in previously untreated locally advanced or metastatic non-small cell lung cancer. J Thorac Oncol 6(6):1098–1103PubMedCrossRefGoogle Scholar
  234. 234.
    Kelly RJ, Giaccone G (2010) The role of talactoferrin alpha in the treatment of non-small cell lung cancer. Expert Opin Biol Ther 10(9):1379–1386PubMedCrossRefGoogle Scholar
  235. 235.
    Sessa C et al (2009) Phase I clinical and pharmacokinetic study of trabectedin and cisplatin in solid tumours. Eur J Cancer 45(12):2116–2122PubMedCrossRefGoogle Scholar
  236. 236.
    Massuti B et al (2012) Trabectedin in patients with advanced non-small-cell lung cancer (NSCLC) with XPG and/or ERCC1 overexpression and BRCA1 underexpression and pretreated with platinum. Lung Cancer 76(3):354–361PubMedCrossRefGoogle Scholar
  237. 237.
    Iclozan C et al (2013) Therapeutic regulation of myeloid-derived suppressor cells and immune response to cancer vaccine in patients with extensive stage small cell lung cancer. Cancer Immunol Immunother 62(5):909–918PubMedPubMedCentralCrossRefGoogle Scholar
  238. 238.
    Hanna N et al (2006) Phase II trial of cetuximab in patients with previously treated non-small-cell lung cancer. J Clin Oncol 24(33):5253–5258PubMedCrossRefGoogle Scholar
  239. 239.
    Pirker R et al (2009) Cetuximab plus chemotherapy in patients with advanced non-small-cell lung cancer (FLEX): an open-label randomised phase III trial. Lancet 373(9674):1525–1531PubMedCrossRefGoogle Scholar
  240. 240.
    Clamon G et al (2005) Lack of trastuzumab activity in nonsmall cell lung carcinoma with overexpression of erb-B2: 39810: a phase II trial of Cancer and Leukemia Group B. Cancer 103(8):1670–1675PubMedCrossRefGoogle Scholar
  241. 241.
    Lara PN Jr et al (2004) Trastuzumab plus docetaxel in HER2/neu-positive non-small-cell lung cancer: a California Cancer Consortium screening and phase II trial. Clin Lung Cancer 5(4):231–236PubMedCrossRefGoogle Scholar
  242. 242.
    Hassan R et al (2007) Phase I study of SS1P, a recombinant anti-mesothelin immunotoxin given as a bolus I.V. infusion to patients with mesothelin-expressing mesothelioma, ovarian, and pancreatic cancers. Clin Cancer Res 13(17):5144–5149PubMedCrossRefGoogle Scholar
  243. 243.
    Barlesi F et al (2013) Randomized phase III trial of maintenance bevacizumab with or without pemetrexed after first-line induction with bevacizumab, cisplatin, and pemetrexed in advanced nonsquamous non-small-cell lung cancer: AVAPERL (MO22089). J Clin Oncol 31(24):3004–11Google Scholar
  244. 244.
    Reck M et al (2013) Ipilimumab in combination with paclitaxel and carboplatin as first-line therapy in extensive-disease-small-cell lung cancer: results from a randomized, double-blind, multicenter phase 2 trial. Ann Oncol 24(1):75–83PubMedCrossRefGoogle Scholar
  245. 245.
    Brezicka T et al (2000) Reactivity of monoclonal antibodies with ganglioside antigens in human small cell lung cancer tissues. Lung Cancer 28(1):29–36PubMedCrossRefGoogle Scholar
  246. 246.
    Fernandez LE et al (2010) NGcGM3 ganglioside: a privileged target for cancer vaccines. Clin Dev Immunol 2010:814397PubMedPubMedCentralCrossRefGoogle Scholar
  247. 247.
    Nemunaitis J et al (2009) Phase II trial of Belagenpumatucel-L, a TGF-beta2 antisense gene modified allogeneic tumor vaccine in advanced non small cell lung cancer (NSCLC) patients. Cancer Gene Ther 16(8):620–624PubMedCrossRefGoogle Scholar
  248. 248.
    Butts C et al (2011) Updated survival analysis in patients with stage IIIB or IV non-small-cell lung cancer receiving BLP25 liposome vaccine (L-BLP25): phase IIB randomized, multicenter, open-label trial. J Cancer Res Clin Oncol 137(9):1337–1342PubMedCrossRefGoogle Scholar
  249. 249.
    Grant SC et al (1999) Long survival of patients with small cell lung cancer after adjuvant treatment with the anti-idiotypic antibody BEC2 plus Bacillus Calmette-Guerin. Clin Cancer Res 5(6):1319–1323PubMedGoogle Scholar
  250. 250.
    Vazquez AM et al (2012) Racotumomab: an anti-idiotype vaccine related to N-glycolyl-containing gangliosides - preclinical and clinical data. Front Oncol 2:150PubMedPubMedCentralGoogle Scholar
  251. 251.
    Rosenberg SA et al (1985) Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med 313(23):1485–1492PubMedCrossRefGoogle Scholar
  252. 252.
    Ma Y et al (2012) Cytokine-induced killer cells in the treatment of patients with solid carcinomas: a systematic review and pooled analysis. Cytotherapy 14(4):483–493PubMedCrossRefGoogle Scholar
  253. 253.
    Terme M et al (2008) Natural killer cell-directed therapies: moving from unexpected results to successful strategies. Nat Immunol 9(5):486–494PubMedCrossRefGoogle Scholar
  254. 254.
    Hirschowitz EA et al (2004) Autologous dendritic cell vaccines for non-small-cell lung cancer. J Clin Oncol 22(14):2808–2815PubMedCrossRefGoogle Scholar
  255. 255.
    Hirschowitz EA et al (2007) Immunization of NSCLC patients with antigen-pulsed immature autologous dendritic cells. Lung Cancer 57(3):365–372PubMedPubMedCentralCrossRefGoogle Scholar
  256. 256.
    Um SJ et al (2010) Phase I study of autologous dendritic cell tumor vaccine in patients with non-small cell lung cancer. Lung Cancer 70(2):188–194PubMedCrossRefGoogle Scholar
  257. 257.
    Madan RA et al (2010) Therapeutic cancer vaccines in prostate cancer: the paradox of improved survival without changes in time to progression. Oncologist 15(9):969–975PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Lysanne Lievense
    • 1
  • Joachim Aerts
    • 1
  • Joost Hegmans
    • 1
    Email author
  1. 1.Department of Pulmonary MedicineErasmus MC Cancer InstituteRotterdamThe Netherlands

Personalised recommendations