Epidemiology of Lung Cancer

  • Ann G. SchwartzEmail author
  • Michele L. Cote
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 893)


Lung cancer continues to be one of the most common causes of cancer death despite understanding the major cause of the disease: cigarette smoking. Smoking increases lung cancer risk 5- to 10-fold with a clear dose–response relationship. Exposure to environmental tobacco smoke among nonsmokers increases lung cancer risk about 20 %. Risks for marijuana and hookah use, and the new e-cigarettes, are yet to be consistently defined and will be important areas for continued research as use of these products increases. Other known environmental risk factors include exposures to radon, asbestos, diesel, and ionizing radiation. Host factors have also been associated with lung cancer risk, including family history of lung cancer, history of chronic obstructive pulmonary disease and infections. Studies to identify genes associated with lung cancer susceptibility have consistently identified chromosomal regions on 15q25, 6p21 and 5p15 associated with lung cancer risk. Risk prediction models for lung cancer typically include age, sex, cigarette smoking intensity and/or duration, medical history, and occupational exposures, however there is not yet a risk prediction model currently recommended for general use. As lung cancer screening becomes more widespread, a validated model will be needed to better define risk groups to inform screening guidelines.


Lung cancer Epidemiology Smoking Genetics Susceptibility Risk models 


  1. 1.
    Reports of the Surgeon General (1964) Smoking and health, Report of the advisory committee to the surgeon general of the Public Health Service. Public Health Service publication no. 1103Google Scholar
  2. 2.
    Schiller JS, Lucas JW, Ward BW et al (2012) Summary health statistics for U.S. adults: national health interview survey. Vital Health Stat 10(265):1–218Google Scholar
  3. 3.
    Reports of the Surgeon General (1986) The health consequences of involuntary smoking: a report of the surgeon general. Edited by Service PH. DHHS publication PHS 87–8398, RockvilleGoogle Scholar
  4. 4.
    Zhong L, Goldberg MS, Parent ME, Hanley JA (2000) Exposure to environmental tobacco smoke and the risk of lung cancer: a meta-analysis. Lung Cancer 27(1):3–18CrossRefPubMedGoogle Scholar
  5. 5.
    Stayner L, Bena J, Sasco AJ, Smith R, Steenland K, Kreuzer M, Straif K (2007) Lung cancer risk and workplace exposure to environmental tobacco smoke. Am J Public Health 97(3):545–551PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Henley SJ, Thun MJ, Chao A, Calle EE (2004) Association between exclusive pipe smoking and mortality from cancer and other diseases. J Natl Cancer Inst 96(11):853–861CrossRefPubMedGoogle Scholar
  7. 7.
    Shapiro JA, Jacobs EJ, Thun MJ (2000) Cigar smoking in men and risk of death from tobacco-related cancers. J Natl Cancer Inst 92(4):333–337CrossRefPubMedGoogle Scholar
  8. 8.
    McCormack VA, Agudo A, Dahm CC, Overvad K, Olsen A, Tjonneland A, Kaaks R, Boeing H, Manjer J, Almquist M et al (2010) Cigar and pipe smoking and cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC). Int J Cancer 127(10):2402–2411CrossRefPubMedGoogle Scholar
  9. 9.
    Callaghan RC, Allebeck P, Sidorchuk A (2013) Marijuana use and risk of lung cancer: a 40-year cohort study. Cancer Causes Control 24(10):1811–1820CrossRefPubMedGoogle Scholar
  10. 10.
    Eaton DK, Kann L, Kinchen S et al (2012) Youth risk behavior – United States. Morb Mortal Wkly Rep 61(SS04):1–162Google Scholar
  11. 11.
    Cobb CO, Shihadeh A, Weaver MF, Eissenberg T (2011) Waterpipe tobacco smoking and cigarette smoking: a direct comparison of toxicant exposure and subjective effects. Nicotine Tob Res 13(2):78–87CrossRefPubMedGoogle Scholar
  12. 12.
    Johnston LD, O’Malley P, Bachman JG et al (2010) Monitoring the future national survey results on adolescent drug use, 1975–2011: volume I, Secondary school students. Institute for Social Research, Ann ArborGoogle Scholar
  13. 13.
    Heinz AJ, Giedgowd GE, Crane NA, Veilleux JC, Conrad M, Braun AR, Olejarska NA, Kassel JD (2013) A comprehensive examination of hookah smoking in college students: use patterns and contexts, social norms and attitudes, harm perception, psychological correlates and co-occurring substance use. Addict Behav 38(11):2751–2760CrossRefPubMedGoogle Scholar
  14. 14.
    Holtzman AL, Babinski D, Merlo LJ (2013) Knowledge and attitudes toward hookah usage among university students. J Am Coll Health 61(6):362–370CrossRefPubMedGoogle Scholar
  15. 15.
    Darby S, Hill D, Auvinen A, Barros-Dios JM, Baysson H, Bochicchio F, Deo H, Falk R, Forastiere F, Hakama M et al (2005) Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 European case–control studies. BMJ 330(7485):223PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Darby S, Hill D, Deo H, Auvinen A, Barros-Dios JM, Baysson H, Bochicchio F, Falk R, Farchi S, Figueiras A et al (2006) Residential radon and lung cancer--detailed results of a collaborative analysis of individual data on 7148 persons with lung cancer and 14,208 persons without lung cancer from 13 epidemiologic studies in Europe. Scand J Work Environ Health 32(Suppl 1):1–83PubMedGoogle Scholar
  17. 17.
    Krewski D, Lubin JH, Zielinski JM, Alavanja M, Catalan VS, Field RW, Klotz JB, Letourneau EG, Lynch CF, Lyon JL et al (2006) A combined analysis of North American case–control studies of residential radon and lung cancer. J Toxicol Environ Health A 69(7):533–597CrossRefPubMedGoogle Scholar
  18. 18.
    United States Environmental Protection Agency (2003) EPA assessment of risks from radon in homes. Air OoRaI, Washington, DCGoogle Scholar
  19. 19.
    United States Environmental Protection Agency (2011) Protecting people and families from radon. A federal action plan for saving lives. Environmental Protection Agency. Washington D.C.Google Scholar
  20. 20.
    Hosgood HD 3rd, Wei H, Sapkota A, Choudhury I, Bruce N, Smith KR, Rothman N, Lan Q (2011) Household coal use and lung cancer: systematic review and meta-analysis of case–control studies, with an emphasis on geographic variation. Int J Epidemiol 40(3):719–728PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Mu L, Liu L, Niu R, Zhao B, Shi J, Li Y, Swanson M, Scheider W, Su J, Chang SC et al (2013) Indoor air pollution and risk of lung cancer among Chinese female non-smokers. Cancer Causes Control 24(3):439–450PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Zhong L, Goldberg MS, Gao YT, Jin F (1999) Lung cancer and indoor air pollution arising from Chinese-style cooking among nonsmoking women living in Shanghai, China. Epidemiology 10(5):488–494CrossRefPubMedGoogle Scholar
  23. 23.
    Pope CA 3rd, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, Thurston GD (2002) Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 287(9):1132–1141PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Turner MC, Krewski D, Pope CA 3rd, Chen Y, Gapstur SM, Thun MJ (2011) Long-term ambient fine particulate matter air pollution and lung cancer in a large cohort of never-smokers. Am J Respir Crit Care Med 184(12):1374–1381CrossRefPubMedGoogle Scholar
  25. 25.
    McCormack V, Peto J, Byrnes G, Straif K, Boffetta P (2012) Estimating the asbestos-related lung cancer burden from mesothelioma mortality. Br J Cancer 106(3):575–584PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Nelson HH, Kelsey KT (2002) The molecular epidemiology of asbestos and tobacco in lung cancer. Oncogene 21(48):7284–7288CrossRefPubMedGoogle Scholar
  27. 27.
    Frost G, Darnton A, Harding AH (2011) The effect of smoking on the risk of lung cancer mortality for asbestos workers in Great Britain (1971–2005). Ann Occup Hyg 55(3):239–247PubMedGoogle Scholar
  28. 28.
    Olsson AC, Gustavsson P, Kromhout H, Peters S, Vermeulen R, Bruske I, Pesch B, Siemiatycki J, Pintos J, Bruning T et al (2011) Exposure to diesel motor exhaust and lung cancer risk in a pooled analysis from case–control studies in Europe and Canada. Am J Respir Crit Care Med 183(7):941–948CrossRefPubMedGoogle Scholar
  29. 29.
    Gamble JF, Nicolich MJ, Boffetta P (2012) Lung cancer and diesel exhaust: an updated critical review of the occupational epidemiology literature. Crit Rev Toxicol 42(7):549–598PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Preston DL, Ron E, Tokuoka S, Funamoto S, Nishi N, Soda M, Mabuchi K, Kodama K (2007) Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat Res 168(1):1–64CrossRefPubMedGoogle Scholar
  31. 31.
    Fazel R, Krumholz HM, Wang Y, Ross JS, Chen J, Ting HH, Shah ND, Nasir K, Einstein AJ, Nallamothu BK (2009) Exposure to low-dose ionizing radiation from medical imaging procedures. N Engl J Med 361(9):849–857PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Brenner DJ (2004) Radiation risks potentially associated with low-dose CT screening of adult smokers for lung cancer. Radiology 231(2):440–445CrossRefPubMedGoogle Scholar
  33. 33.
    Tokuhata GK, Lilienfeld AM (1963) Familial aggregation of lung cancer in humans. J Natl Cancer Inst 30:289–312PubMedGoogle Scholar
  34. 34.
    LA Tokuhata GK (1963) Familial aggregation of lung cancer among hospital patients. Public Health Rep 87:277–283CrossRefGoogle Scholar
  35. 35.
    Matakidou A, Eisen T, Houlston RS (2005) Systematic review of the relationship between family history and lung cancer risk. Br J Cancer 93(7):825–833PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Cote ML, Liu M, Bonassi S, Neri M, Schwartz AG, Christiani DC, Spitz MR, Muscat JE, Rennert G, Aben KK et al (2012) Increased risk of lung cancer in individuals with a family history of the disease: a pooled analysis from the International Lung Cancer Consortium. Eur J Cancer 48(13):1957–1968PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Ooi WL, Elston RC, Chen VW, Bailey-Wilson JE, Rothschild H (1986) Increased familial risk for lung cancer. J Natl Cancer Inst 76(2):217–222PubMedGoogle Scholar
  38. 38.
    Etzel CJ, Amos CI, Spitz MR (2003) Risk for smoking-related cancer among relatives of lung cancer patients. Cancer Res 63(23):8531–8535PubMedGoogle Scholar
  39. 39.
    Cote ML, Kardia SL, Wenzlaff AS, Ruckdeschel JC, Schwartz AG (2005) Risk of lung cancer among white and black relatives of individuals with early-onset lung cancer. JAMA 293(24):3036–3042CrossRefPubMedGoogle Scholar
  40. 40.
    Schwartz AG, Yang P, Swanson GM (1996) Familial risk of lung cancer among nonsmokers and their relatives. Am J Epidemiol 144(6):554–562CrossRefPubMedGoogle Scholar
  41. 41.
    Jonsson S, Thorsteinsdottir U, Gudbjartsson DF, Jonsson HH, Kristjansson K, Arnason S, Gudnason V, Isaksson HJ, Hallgrimsson J, Gulcher JR et al (2004) Familial risk of lung carcinoma in the Icelandic population. JAMA 292(24):2977–2983CrossRefPubMedGoogle Scholar
  42. 42.
    Bailey-Wilson JE, Amos CI, Pinney SM, Petersen GM, de Andrade M, Wiest JS, Fain P, Schwartz AG, You M, Franklin W et al (2004) A major lung cancer susceptibility locus maps to chromosome 6q23-25. Am J Hum Genet 75(3):460–474PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Amos CI, Pinney SM, Li Y, Kupert E, Lee J, de Andrade MA, Yang P, Schwartz AG, Fain PR, Gazdar A et al (2010) A susceptibility locus on chromosome 6q greatly increases lung cancer risk among light and never smokers. Cancer Res 70(6):2359–2367PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Fang S, Pinney SM, Bailey-Wilson JE, de Andrade MA, Li Y, Kupert E, You M, Schwartz AG, Yang P, Anderson MW et al (2010) Ordered subset analysis identifies loci influencing lung cancer risk on chromosomes 6q and 12q. Cancer Epidemiol Biomarkers Prev 19(12):3157–3166PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Schwartz AG, Prysak GM, Bock CH, Cote ML (2007) The molecular epidemiology of lung cancer. Carcinogenesis 28(3):507–518CrossRefPubMedGoogle Scholar
  46. 46.
    Marshall AL, Christiani DC (2013) Genetic susceptibility to lung cancer–light at the end of the tunnel? Carcinogenesis 34(3):487–502PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Hung RJ, McKay JD, Gaborieau V, Boffetta P, Hashibe M, Zaridze D, Mukeria A, Szeszenia-Dabrowska N, Lissowska J, Rudnai P et al (2008) A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature 452(7187):633–637CrossRefPubMedGoogle Scholar
  48. 48.
    Thorgeirsson TE, Geller F, Sulem P, Rafnar T, Wiste A, Magnusson KP, Manolescu A, Thorleifsson G, Stefansson H, Ingason A et al (2008) A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature 452(7187):638–642PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Amos CI, Wu X, Broderick P, Gorlov IP, Gu J, Eisen T, Dong Q, Zhang Q, Gu X, Vijayakrishnan J et al (2008) Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nat Genet 40(5):616–622PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Saccone NL, Culverhouse RC, Schwantes-An TH et al (2010) Multiple independent loci at chromosome 15q25.1 affect smoking quantity: a meta-analysis and comparison with lung cancer and COPD. PLoS Genet 6(8):e1001053Google Scholar
  51. 51.
    Broderick P, Wang Y, Vijayakrishnan J, Matakidou A, Spitz MR, Eisen T, Amos CI, Houlston RS (2009) Deciphering the impact of common genetic variation on lung cancer risk: a genome-wide association study. Cancer Res 69(16):6633–6641PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    Wang Y, Broderick P, Webb E, Wu X, Vijayakrishnan J, Matakidou A, Qureshi M, Dong Q, Gu X, Chen WV et al (2008) Common 5p15.33 and 6p21.33 variants influence lung cancer risk. Nat Genet 40(12):1407–1409PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Timofeeva MN, Hung RJ, Rafnar T, Christiani DC, Field JK, Bickeboller H, Risch A, McKay JD, Wang Y, Dai J et al (2012) Influence of common genetic variation on lung cancer risk: meta-analysis of 14 900 cases and 29 485 controls. Hum Mol Genet 21(22):4980–4995PubMedCentralCrossRefPubMedGoogle Scholar
  54. 54.
    Hu Z, Wu C, Shi Y, Guo H, Zhao X, Yin Z, Yang L, Dai J, Hu L, Tan W et al (2011) A genome-wide association study identifies two new lung cancer susceptibility loci at 13q12.12 and 22q12.2 in Han Chinese. Nat Genet 43(8):792–796CrossRefPubMedGoogle Scholar
  55. 55.
    Dong J, Hu Z, Wu C, Guo H, Zhou B, Lv J, Lu D, Chen K, Shi Y, Chu M et al (2012) Association analyses identify multiple new lung cancer susceptibility loci and their interactions with smoking in the Chinese population. Nat Genet 44(8):895–899CrossRefPubMedGoogle Scholar
  56. 56.
    Shiraishi K, Kunitoh H, Daigo Y, Takahashi A, Goto K, Sakamoto H, Ohnami S, Shimada Y, Ashikawa K, Saito A et al (2012) A genome-wide association study identifies two new susceptibility loci for lung adenocarcinoma in the Japanese population. Nat Genet 44(8):900–903CrossRefPubMedGoogle Scholar
  57. 57.
    Lan Q, Hsiung CA, Matsuo K, Hong YC, Seow A, Wang Z, Hosgood HD 3rd, Chen K, Wang JC, Chatterjee N et al (2012) Genome-wide association analysis identifies new lung cancer susceptibility loci in never-smoking women in Asia. Nat Genet 44(12):1330–1335PubMedCentralCrossRefPubMedGoogle Scholar
  58. 58.
    Schwartz AG, Cote ML, Wenzlaff AS, Land S, Amos CI (2009) Racial differences in the association between SNPs on 15q25.1, smoking behavior, and risk of non-small cell lung cancer. J Thorac Oncol 4(10):1195–1201Google Scholar
  59. 59.
    Walsh KM, Gorlov IP, Hansen HM, Wu X, Spitz MR, Zhang H, Lu EY, Wenzlaff AS, Sison JD, Wei C et al (2013) Fine-mapping of the 5p15.33, 6p22.1-p21.31, and 15q25.1 regions identifies functional and histology-specific lung cancer susceptibility loci in African-Americans. Cancer Epidemiol Biomarkers Prev 22(2):251–260CrossRefPubMedGoogle Scholar
  60. 60.
    Mannino DM, Aguayo SM, Petty TL, Redd SC (2003) Low lung function and incident lung cancer in the United States: data from the First National Health and Nutrition Examination Survey follow-up. Arch Intern Med 163(12):1475–1480CrossRefPubMedGoogle Scholar
  61. 61.
    Purdue MP, Gold L, Jarvholm B, Alavanja MC, Ward MH, Vermeulen R (2007) Impaired lung function and lung cancer incidence in a cohort of Swedish construction workers. Thorax 62(1):51–56CrossRefPubMedGoogle Scholar
  62. 62.
    Schabath MB, Delclos GL, Martynowicz MM, Greisinger AJ, Lu C, Wu X, Spitz MR (2005) Opposing effects of emphysema, hay fever, and select genetic variants on lung cancer risk. Am J Epidemiol 161(5):412–422CrossRefPubMedGoogle Scholar
  63. 63.
    Littman AJ, Thornquist MD, White E, Jackson LA, Goodman GE, Vaughan TL (2004) Prior lung disease and risk of lung cancer in a large prospective study. Cancer Causes Control 15(8):819–827CrossRefPubMedGoogle Scholar
  64. 64.
    Wilson DO, Weissfeld JL, Balkan A, Schragin JG, Fuhrman CR, Fisher SN, Wilson J, Leader JK, Siegfried J, Shapiro SD et al (2008) Association of radiographic emphysema and airflow obstruction with lung cancer. Am J Respir Crit Care Med 178(7):738–744PubMedCentralCrossRefPubMedGoogle Scholar
  65. 65.
    Brenner DR, McLaughlin JR, Hung RJ (2011) Previous lung diseases and lung cancer risk: a systematic review and meta-analysis. PLoS One 6, e17479PubMedCentralCrossRefGoogle Scholar
  66. 66.
    Schwartz AG, Cote ML, Wenzlaff AS, Van Dyke A, Chen W, Ruckdeschel JC, Gadgeel S, Soubani AO (2009) Chronic obstructive lung diseases and risk of non-small cell lung cancer in women. J Thorac Oncol 4(3):291–299PubMedCentralCrossRefPubMedGoogle Scholar
  67. 67.
    Turner MC, Chen Y, Krewski D, Calle EE, Thun MJ (2007) Chronic obstructive pulmonary disease is associated with lung cancer mortality in a prospective study of never smokers. Am J Respir Crit Care Med 176(3):285–290CrossRefPubMedGoogle Scholar
  68. 68.
    Anthonisen NR, Connett JE, Kiley JP, Altose MD, Bailey WC, Buist AS, Conway WA Jr, Enright PL, Kanner RE, O’Hara P et al (1994) Effects of smoking intervention and the use of an inhaled anticholinergic bronchodilator on the rate of decline of FEV1. The Lung Health Study. JAMA 272(19):1497–1505CrossRefPubMedGoogle Scholar
  69. 69.
    McGarvey LP, John M, Anderson JA, Zvarich M, Wise RA (2007) Ascertainment of cause-specific mortality in COPD: operations of the TORCH Clinical Endpoint Committee. Thorax 62(5):411–415PubMedCentralCrossRefGoogle Scholar
  70. 70.
    Brownson RC, Alavanja MC, Caporaso N, Berger E, Chang JC (1997) Family history of cancer and risk of lung cancer in lifetime non-smokers and long-term ex-smokers. Int J Epidemiol 26(2):256–263CrossRefPubMedGoogle Scholar
  71. 71.
    Mayne ST, Buenconsejo J, Janerich DT (1999) Familial cancer history and lung cancer risk in United States nonsmoking men and women. Cancer Epidemiol Biomarkers Prev 8(12):1065–1069PubMedGoogle Scholar
  72. 72.
    Wasswa-Kintu S, Gan WQ, Man SF, Pare PD, Sin DD (2005) Relationship between reduced forced expiratory volume in one second and the risk of lung cancer: a systematic review and meta-analysis. Thorax 60(7):570–575PubMedCentralCrossRefPubMedGoogle Scholar
  73. 73.
    de Torres JP, Bastarrika G, Wisnivesky JP, Alcaide AB, Campo A, Seijo LM, Pueyo JC, Villanueva A, Lozano MD, Montes U et al (2007) Assessing the relationship between lung cancer risk and emphysema detected on low-dose CT of the chest. Chest 132(6):1932–1938CrossRefPubMedGoogle Scholar
  74. 74.
    Ueda K, Jinbo M, Li TS, Yagi T, Suga K, Hamano K (2006) Computed tomography-diagnosed emphysema, not airway obstruction, is associated with the prognostic outcome of early-stage lung cancer. Clin Cancer Res 12(22):6730–6736CrossRefPubMedGoogle Scholar
  75. 75.
    Li Y, Swensen SJ, Karabekmez LG, Marks RS, Stoddard SM, Jiang R, Worra JB, Zhang F, Midthun DE, de Andrade M et al (2011) Effect of emphysema on lung cancer risk in smokers: a computed tomography-based assessment. Cancer Prev Res (Phila) 4(1):43–50CrossRefGoogle Scholar
  76. 76.
    Maldonado F, Bartholmai BJ, Swensen SJ, Midthun DE, Decker PA, Jett JR (2010) Are airflow obstruction and radiographic emphysema risk factors for lung cancer? A nested case–control study using quantitative emphysema analysis. Chest 138(6):1295–1302CrossRefPubMedGoogle Scholar
  77. 77.
    Wilson DO, Leader JK, Fuhrman CR, Reilly JJ, Sciurba FC, Weissfeld JL (2011) Quantitative computed tomography analysis, airflow obstruction, and lung cancer in the Pittsburgh lung screening study. J Thorac Oncol 6(7):1200–1205Google Scholar
  78. 78.
    Cohen BH, Diamond EL, Graves CG, Kreiss P, Levy DA, Menkes HA, Permutt S, Quaskey S, Tockman MS (1977) A common familial component in lung cancer and chronic obstructive pulmonary disease. Lancet 2(8037):523–526CrossRefPubMedGoogle Scholar
  79. 79.
    Wu AH, Yu MC, Thomas DC, Pike MC, Henderson BE (1988) Personal and family history of lung disease as risk factors for adenocarcinoma of the lung. Cancer Res 48(24 Pt 1):7279–7284PubMedGoogle Scholar
  80. 80.
    Joost O, Wilk JB, Cupples LA, Harmon M, Shearman AM, Baldwin CT, O’Connor GT, Myers RH, Gottlieb DJ (2002) Genetic loci influencing lung function: a genome-wide scan in the Framingham Study. Am J Respir Crit Care Med 165(6):795–799CrossRefPubMedGoogle Scholar
  81. 81.
    Wilk JB, DeStefano AL, Joost O, Myers RH, Cupples LA, Slater K, Atwood LD, Heard-Costa NL, Herbert A, O’Connor GT et al (2003) Linkage and association with pulmonary function measures on chromosome 6q27 in the Framingham Heart Study. Hum Mol Genet 12(21):2745–2751CrossRefPubMedGoogle Scholar
  82. 82.
    DeMeo DL, Celedon JC, Lange C, Reilly JJ, Chapman HA, Sylvia JS, Speizer FE, Weiss ST, Silverman EK (2004) Genome-wide linkage of forced mid-expiratory flow in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 170(12):1294–1301CrossRefPubMedGoogle Scholar
  83. 83.
    Silverman EK, Mosley JD, Palmer LJ, Barth M, Senter JM, Brown A, Drazen JM, Kwiatkowski DJ, Chapman HA, Campbell EJ et al (2002) Genome-wide linkage analysis of severe, early-onset chronic obstructive pulmonary disease: airflow obstruction and chronic bronchitis phenotypes. Hum Mol Genet 11(6):623–632CrossRefPubMedGoogle Scholar
  84. 84.
    Masri FA, Comhair SA, Koeck T, Xu W, Janocha A, Ghosh S, Dweik RA, Golish J, Kinter M, Stuehr DJ et al (2005) Abnormalities in nitric oxide and its derivatives in lung cancer. Am J Respir Crit Care Med 172(5):597–605PubMedCentralCrossRefPubMedGoogle Scholar
  85. 85.
    Yoshida T, Tuder RM (2007) Pathobiology of cigarette smoke-induced chronic obstructive pulmonary disease. Physiol Rev 87(3):1047–1082CrossRefPubMedGoogle Scholar
  86. 86.
    Macnee W (2007) Pathogenesis of chronic obstructive pulmonary disease. Clin Chest Med 28(3):479–513, vCrossRefPubMedGoogle Scholar
  87. 87.
    Schwartz AG, Prysak GM, Bock CH, Cote ML (2006) The molecular epidemiology of lung cancer. Carcinogenesis 28(3):507–518CrossRefPubMedGoogle Scholar
  88. 88.
    Schwartz AG, Ruckdeschel JC (2006) Familial lung cancer: genetic susceptibility and relationship to chronic obstructive pulmonary disease. Am J Respir Crit Care Med 173(1):16–22CrossRefPubMedGoogle Scholar
  89. 89.
    Engels EA, Wu X, Gu J, Dong Q, Liu J, Spitz MR (2007) Systematic evaluation of genetic variants in the inflammation pathway and risk of lung cancer. Cancer Res 67(13):6520–6527CrossRefPubMedGoogle Scholar
  90. 90.
    Molfino NA (2007) Current thinking on genetics of chronic obstructive pulmonary disease. Curr Opin Pulm Med 13(2):107–113CrossRefPubMedGoogle Scholar
  91. 91.
    Smolonska J, Wijmenga C, Postma DS, Boezen HM (2009) Meta-analyses on suspected chronic obstructive pulmonary disease genes: a summary of 20 years’ research. Am J Respir Crit Care Med 180(7):618–631CrossRefPubMedGoogle Scholar
  92. 92.
    Van Dyke AL, Cote ML, Wenzlaff AS, Chen W, Abrams J, Land S, Giroux CN, Schwartz AG (2009) Cytokine and cytokine receptor single-nucleotide polymorphisms predict risk for non-small cell lung cancer among women. Cancer Epidemiol Biomarkers Prev 18(6):1829–1840PubMedCentralCrossRefPubMedGoogle Scholar
  93. 93.
    Pillai SG, Ge D, Zhu G, Kong X, Shianna KV, Need AC, Feng S, Hersh CP, Bakke P, Gulsvik A et al (2009) A genome-wide association study in chronic obstructive pulmonary disease (COPD): identification of two major susceptibility loci. PLoS Genet 5(3), e1000421PubMedCentralCrossRefPubMedGoogle Scholar
  94. 94.
    Lambrechts D, Buysschaert I, Zanen P, Coolen J, Lays N, Cuppens H, Groen HJ, Dewever W, van Klaveren RJ, Verschakelen J et al (2010) The 15q24/25 susceptibility variant for lung cancer and chronic obstructive pulmonary disease is associated with emphysema. Am J Respir Crit Care Med 181(5):486–493CrossRefPubMedGoogle Scholar
  95. 95.
    Thorgeirsson TE, Gudbjartsson DF, Surakka I, Vink JM, Amin N, Geller F, Sulem P, Rafnar T, Esko T, Walter S et al (2010) Sequence variants at CHRNB3-CHRNA6 and CYP2A6 affect smoking behavior. Nat Genet 42(5):448–453PubMedCentralCrossRefPubMedGoogle Scholar
  96. 96.
    Wilk JB, Shrine NR, Loehr LR, Zhao JH, Manichaikul A, Lopez LM, Smith AV, Heckbert SR, Smolonska J, Tang W et al (2012) Genome-wide association studies identify CHRNA5/3 and HTR4 in the development of airflow obstruction. Am J Respir Crit Care Med 186(7):622–632PubMedCentralCrossRefPubMedGoogle Scholar
  97. 97.
    Young RP, Hopkins RJ, Whittington CF, Hay BA, Epton MJ, Gamble GD (2011) Individual and cumulative effects of GWAS susceptibility loci in lung cancer: associations after sub-phenotyping for COPD. PLoS One 6(2), e16476PubMedCentralCrossRefPubMedGoogle Scholar
  98. 98.
    Houghton AM (2013) Mechanistic links between COPD and lung cancer. Nat Rev Cancer 13(4):233–245CrossRefPubMedGoogle Scholar
  99. 99.
    Liang HY, Li XL, Yu XS, Guan P, Yin ZH, He QC, Zhou BS (2009) Facts and fiction of the relationship between preexisting tuberculosis and lung cancer risk: a systematic review. Int J Cancer 125(12):2936–2944CrossRefPubMedGoogle Scholar
  100. 100.
    Wu CY, Hu HY, Pu CY, Huang N, Shen HC, Li CP, Chou YJ (2011) Pulmonary tuberculosis increases the risk of lung cancer: a population-based cohort study. Cancer 117(3):618–624CrossRefPubMedGoogle Scholar
  101. 101.
    Srinivasan M, Taioli E, Ragin CC (2009) Human papillomavirus type 16 and 18 in primary lung cancers–a meta-analysis. Carcinogenesis 30(10):1722–1728PubMedCentralCrossRefPubMedGoogle Scholar
  102. 102.
    Hasegawa Y, Ando M, Kubo A, Isa SI, Yamamoto S, Tsujino K, Kurata T, Ou SH, Takada M, Kawaguchi T (2013) Human papilloma virus in non-small cell lung cancer in never smokers: a systematic review of the literature. Lung Cancer 83(1):8–13Google Scholar
  103. 103.
    Hou W, Fu J, Ge Y, Du J, Hua S (2013) Incidence and risk of lung cancer in HIV-infected patients. J Cancer Res Clin Oncol 139(11):1781–1794CrossRefPubMedGoogle Scholar
  104. 104.
    Clifford GM, Polesel J, Rickenbach M, Dal Maso L, Keiser O, Kofler A, Rapiti E, Levi F, Jundt G, Fisch T et al (2005) Cancer risk in the Swiss HIV cohort study: associations with immunodeficiency, smoking, and highly active antiretroviral therapy. J Natl Cancer Inst 97(6):425–432CrossRefPubMedGoogle Scholar
  105. 105.
    Engels EA, Brock MV, Chen J, Hooker CM, Gillison M, Moore RD (2006) Elevated incidence of lung cancer among HIV-infected individuals. J Clin Oncol 24(9):1383–1388CrossRefPubMedGoogle Scholar
  106. 106.
    Serraino D, Piselli P, Busnach G, Burra P, Citterio F, Arbustini E, Baccarani U, De Juli E, Pozzetto U, Bellelli S et al (2007) Risk of cancer following immunosuppression in organ transplant recipients and in HIV-positive individuals in southern Europe. Eur J Cancer 43(14):2117–2123CrossRefPubMedGoogle Scholar
  107. 107.
    Bach PB, Kattan MW, Thornquist MD, Kris MG, Tate RC, Barnett MJ, Hsieh LJ, Begg CB (2003) Variations in lung cancer risk among smokers. J Natl Cancer Inst 95(6):470–478CrossRefPubMedGoogle Scholar
  108. 108.
    Hoggart C, Brennan P, Tjonneland A, Vogel U, Overvad K, Ostergaard JN, Kaaks R, Canzian F, Boeing H, Steffen A et al (2012) A risk model for lung cancer incidence. Cancer Prev Res (Phila) 5(6):834–846CrossRefGoogle Scholar
  109. 109.
    Tammemagi CM, Pinsky PF, Caporaso NE, Kvale PA, Hocking WG, Church TR, Riley TL, Commins J, Oken MM, Berg CD et al (2011) Lung cancer risk prediction: prostate, lung, colorectal and ovarian cancer screening trial models and validation. J Natl Cancer Inst 103(13):1058–1068PubMedCentralCrossRefPubMedGoogle Scholar
  110. 110.
    Tammemagi MC, Katki HA, Hocking WG, Church TR, Caporaso N, Kvale PA, Chaturvedi AK, Silvestri GA, Riley TL, Commins J et al (2013) Selection criteria for lung-cancer screening. N Engl J Med 368(8):728–736PubMedCentralCrossRefPubMedGoogle Scholar
  111. 111.
    Cassidy A, Myles JP, van Tongeren M, Page RD, Liloglou T, Duffy SW, Field JK (2008) The LLP risk model: an individual risk prediction model for lung cancer. Br J Cancer 98(2):270–276CrossRefPubMedGoogle Scholar
  112. 112.
    Spitz MR, Hong WK, Amos CI, Wu X, Schabath MB, Dong Q, Shete S, Etzel CJ (2007) A risk model for prediction of lung cancer. J Natl Cancer Inst 99(9):715–726CrossRefPubMedGoogle Scholar
  113. 113.
    Etzel CJ, Kachroo S, Liu M, D’Amelio A, Dong Q, Cote ML, Wenzlaff AS, Hong WK, Greisinger AJ, Schwartz AG et al (2008) Development and validation of a lung cancer risk prediction model for African-Americans. Cancer Prev Res (Phila) 1(4):255–265CrossRefGoogle Scholar
  114. 114.
    Spitz MR, Etzel CJ, Dong Q, Amos CI, Wei Q, Wu X, Hong WK (2008) An expanded risk prediction model for lung cancer. Cancer Prev Res (Phila) 1(4):250–254CrossRefGoogle Scholar
  115. 115.
    Schumacher M, Hollander N, Sauerbrei W (1997) Resampling and cross-validation techniques: a tool to reduce bias caused by model building? Stat Med 16(24):2813–2827CrossRefPubMedGoogle Scholar
  116. 116.
    Whittemore AS (2010) Evaluating health risk models. Stat Med 29(23):2438–2452PubMedCentralPubMedGoogle Scholar
  117. 117.
    Raji OY, Agbaje OF, Duffy SW, Cassidy A, Field JK (2010) Incorporation of a genetic factor into an epidemiologic model for prediction of individual risk of lung cancer: the Liverpool Lung Project. Cancer Prev Res (Phila) 3(5):664–669CrossRefGoogle Scholar
  118. 118.
    Li H, Yang L, Zhao X, Wang J, Qian J, Chen H, Fan W, Liu H, Jin L, Wang W et al (2012) Prediction of lung cancer risk in a Chinese population using a multifactorial genetic model. BMC Med Genet 13:118PubMedCentralCrossRefPubMedGoogle Scholar
  119. 119.
    Spitz MR, Amos CI, Land S, Wu X, Dong Q, Wenzlaff AS, Schwartz AG (2013) Role of selected genetic variants in lung cancer risk in African Americans. J Thorac Oncol 8(4):391–397PubMedCentralCrossRefPubMedGoogle Scholar
  120. 120.
    Park JH, Gail MH, Greene MH, Chatterjee N (2012) Potential usefulness of single nucleotide polymorphisms to identify persons at high cancer risk: an evaluation of seven common cancers. J Clin Oncol 30(17):2157–2162PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Oncology, Karmanos Cancer InstituteWayne State University School of MedicineDetroitUSA

Personalised recommendations