Current State of Metal-Based Drugs for the Efficient Therapy of Lung Cancers and Lung Metastases

  • Bernhard BiersackEmail author
  • Rainer Schobert
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 893)


Lung cancer is the second most common cancer in both men and women and thus a leading cause of cancer-related deaths worldwide. New efficient treatments especially for its advanced stages and metastases are desperately needed, particularly with regard to overcoming the resistance which thwarts the efficacy of most clinically established drugs such as the platinum complexes. Glimpses of hope are new metal-based drugs that have emerged over the past decade which displayed efficacy in patients with platinum-resistant tumors and metastases. This chapter provides an overview of the latest developments of such metal-based drugs against lung cancer.


Platinum complexes Ruthenium complexes Gadolinium Ferrocene derivatives Anticancer agents Lung cancer Lung metastasis Multi-drug resistance Tumor targeting 


  1. 1.
    Cooper S, Spiro SG (2006) Small cell lung cancer: treatment review. Respirology 11:241–248CrossRefPubMedGoogle Scholar
  2. 2.
    Haura EB (2001) Treatment of advanced non-small-cell lung cancer: a review of current randomized clinical trials and an examination of emerging therapies. Cancer Control 8:326–336Google Scholar
  3. 3.
    Wong E, Giandomenico CM (1999) Current status of platinum-based antitumor drugs. Chem Rev 99:2451–2466CrossRefPubMedGoogle Scholar
  4. 4.
    Jamieson ER, Lippard SJ (1999) Structure, recognition, and processing of cisplatin-DNA adducts. Chem Rev 99:2467–2498CrossRefPubMedGoogle Scholar
  5. 5.
    Knauer S, Biersack B, Zoldakova M, Effenberger K, Milius W, Schobert R (2009) Melanoma-specific ferrocene esters of the fungal cytotoxin illudin M. Anticancer Drugs 20:676–681Google Scholar
  6. 6.
    Ott I, Gust R (2006) Medizinische Chemie der Platinkomplexe. Pharm Unserer Zeit 35:124–133CrossRefPubMedGoogle Scholar
  7. 7.
    Voigt W, Dietrich A, Schmoll H-J (2006) Cisplatin und seine Analoga. Pharm Unserer Zeit 35:134–143CrossRefPubMedGoogle Scholar
  8. 8.
    Kodaira T, Nobukazu F, Tachibana H, Hidano S (2006) Phase I study of S-1 and nedaplatin for patients with recurrence of head and neck cancer. Anticancer Res 26:2265–2268PubMedGoogle Scholar
  9. 9.
    Oshita F, Yamada K, Saito H, Noda K, Hamanaka N, Ikehara M (2004) Phase II study of nedaplatin and irinotecan for elderly patients with advanced non-small cell lung cancer. J Exp Ther Oncol 4:343–348PubMedGoogle Scholar
  10. 10.
    Gietema JA, Guchelaar H-J, de Vries EGE, Alenbacher P, Sleijfer DT, Mulder NH (1993) A phase I study of lobaplatin (D-19466) administered by 72 h continuous infusion. Anticancer Drugs 4:51–55CrossRefPubMedGoogle Scholar
  11. 11.
    Gietema JA, Veldhuis G-J, Guchelaar H-J, Willemse PHB, Uges DRA, Cats A, Boonstra H, van der Graaf WTA, Sleijfer DT, de Vries EGE, Mulder NH (1995) Phase II and pharmacokinetic study of lobaplatin in patients with relapsed ovarian cancer. Br J Cancer 71:1302–1307CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kavanagh JJ, Edwards CL, Freedman RS, Finnegan MB, Balat O, Tresukosol D, Bunk K, Loechner S, Hord M, Franklin JL, Kudelka AP (1995) A trial of lobaplatin (D-19466) in platinum-resistant ovarian cancer. Gynecol Oncol 58:106–109CrossRefPubMedGoogle Scholar
  13. 13.
    Degardin M, Armand JP, Chevallier B, Cappeleare P, Lentz M-A, David M, Roche H (1995) A clinical screening cooperative group phase II evaluation of lobaplatin (ASTA D-19466) in advanced head and neck cancer. Invest New Drugs 13:253–255CrossRefPubMedGoogle Scholar
  14. 14.
    Welink J, Boven E, Vermorken JB, Gall HE, van der Vijgh WJF (1999) Pharmacokinetics and pharmacodynamics of Lobaplatin (D-19466) in patients with advanced solid tumors, including patients with impaired renal or liver function. Clin Cancer Res 5:2349–2358PubMedGoogle Scholar
  15. 15.
    Jones AL, Smith IE, Townsend HE, Rastogi RB (1991) Phase II study of a platinum complex CL 286558 zeniplatin in non small cell lung cancer NSCLC. Anti-Cancer Drug Des 6:363Google Scholar
  16. 16.
    Drees M, Dengler WM, Hendriks HR, Kelland LR, Fiebig HH (1995) Cycloplatam: a novel platinum compound exhibiting a different spectrum of anti-tumour activity to cisplatin. Eur J Cancer 31:356–361CrossRefGoogle Scholar
  17. 17.
    Pendyala L, Cowens JW, Chheda G, Dutta SP, Creavne PJ (1988) Identification of cis-dichloro-bis-isopropylamine platinum(II) as a major metabolite of iproplatin in humans. Cancer Res 48:3533–3536PubMedGoogle Scholar
  18. 18.
    Kramer B, Birch R, Greco A, Prestridge K, DeSimone P, Omura G (1988) Randomized phase II evaluation of iproplatin (CHIP) and carboplatin (CBDCA) in lung cancer: a southeastern cancer study group trial. Am J Clin Oncol 11:643–645CrossRefPubMedGoogle Scholar
  19. 19.
    Granfortuna J, Newman N, Ginsberg S, Louie A, Comis RL, Gullo JJ, Poiesz BJ (1989) Phase II study of iproplatin (CHIP) in previously treated small-cell lung cancer. Am J Clin Oncol 12:355–357CrossRefPubMedGoogle Scholar
  20. 20.
    Lordick F, Luber B, Lorenzen S, Hegewisch-Becker S, Folprecht G, Woll E, Decker T, Endlicher E, Rothling N, Schuster T, Keller G, Fend F, Peschel C (2010) Cetuximab plus oxaliplatin/leucovorin/5-fluorouracil in first-line metastatic gastric cancer: a phase II study of the Arbeitsgemeinschaft Internistische Onkologie (AIO). Br J Cancer 102:500–505CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Di Blasi P, Bernareggi A, Beggiolin G, Piazzoni L, Menta E, Formento ML (1998) Cytotoxicity, cellular uptake and DNA binding of novel trinuclear platinum complex BBR 3464 in sensitive and cisplatin resistant murine leukemia cells. Anticancer Res 18:3113–3118PubMedGoogle Scholar
  22. 22.
    Kloster MBG, Hannis JC, Muddiman DC, Farrell N (1999) Conformation on the binding of a trinuclear platinum drug. Biochemistry 38:14731–14737CrossRefPubMedGoogle Scholar
  23. 23.
    Scagliotti G, Novello S, Crino L, de Marinia F, Tonato M, Noberasco C, Selvaggi G, Massoni F, Gatti B, Camboni G (2003) Phase II trial of BBR3464, a novel bifunctional platinum analog, as second line treatment of non-small cell lung cancer patients. Lung Cancer 41:S223CrossRefGoogle Scholar
  24. 24.
    Cmelak AJ, Choy H, Murphy BA, DeVore RF, Burkey B, Day TA, LaPorte KL, Johnson D (1999) Phase I study of JM-216 with concurrent radiation in non-small cell lung cancer and squamous cell head and neck cancer. Proc Am Soc Clin Oncol 18:392aGoogle Scholar
  25. 25.
    Choy H, Park C, Yao M (2008) Current status and future prospects for satraplatin, an oral platinum analogue. Clin Cancer Res 14:1633–1638CrossRefPubMedGoogle Scholar
  26. 26.
    Chen Y, Guo Z, Parsons S, Sadler PJ (1998) Stereospecific and kinetic control over the hydrolysis of a sterically hindered platinum picoline anticancer complex. Chem Eur J 4:672–676CrossRefGoogle Scholar
  27. 27.
    Holford J, Sharp S, Murrer B, Abrams M, Kelland L (1998) In vitro circumvention of cisplatin resistance by the novel sterically hindered platinum complex AMD473. Br J Cancer 77:366–373CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Sava G, Capozzi I, Clerici K, Gagliardi G, Alessio E, Mestroni G (1998) Pharmacological control of lung metastases of solid tumours by a novel ruthenium complex. Clin Exp Metastasis 16:371–379CrossRefPubMedGoogle Scholar
  29. 29.
    Sava G, Bergamo A, Zorzet S, Gava B, Casarsa C, Cocchietto M, Furlani A, Scarcia V, Serli B, Iengo E, Alessio E, Mestroni G (2002) Influence of chemical stability on the activity of the antimetastasis ruthenium complex NAMI-A. Eur J Cancer 38:427–435CrossRefPubMedGoogle Scholar
  30. 30.
    Bergamo A, Gagliardi R, Scarcia V, Furlani A, Alessio E, Mestroni G, Sava G (1999) In vitro cell cycle arrest, in vivo action of solid metastasizing tumors, and host toxicity of the antimetastatic drug NAMI-A and cisplatin. J Pharmacol Exp Ther 289:559–564PubMedGoogle Scholar
  31. 31.
    Vacca A, Bruno M, Boccarelli A, Coluccia M, Ribatti D, Bergamo A, Garbisa S, Sartor L, Sava GL (2002) Inhibition of endothelial cell functions and of angiogenesis by the metastasis inhibitor NAMI-A. Br J Cancer 86:993–998CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Pintus G, Tadolini B, Posadino AM, Sanna B, Debidda M, Bennardini F, Sava G, Ventura C (2002) Inhibition of the MEK/ERK signalling pathway by the novel antimetastatic agent NAMI-A down regulates c-myc gene expression and endothelial cell proliferation. Eur J Biochem 269:5861–5870CrossRefPubMedGoogle Scholar
  33. 33.
    Sava G, Frausin F, Cocchietto M, Vita F, Podda E, Spessotto P, Furlani A, Scarcia V, Zabucchi G (2004) Actin-dependent tumour cell adhesion after short-term exposure to the antimetastasis ruthenium complex NAMI-A. Eur J Cancer 40:1383–1396CrossRefPubMedGoogle Scholar
  34. 34.
    Zorzet S, Bergamo A, Cocchietto M, Sorc A, Gava B, Alessio E, Iengo E, Sava G (2000) Lack of in vitro cytotoxicity, associated to increased G2-M cell fraction and inhibition of matrigel invasion, may predict in vivo-selective antimetastasis activity of ruthenium complexes. J Pharmacol Exp Ther 295:927–933PubMedGoogle Scholar
  35. 35.
    Bergamo A, Gava B, Alessio E, Mestroni G, Serli B, Cocchietto M, Zorzet S, Sava G (2002) Ruthenium-based NAMI-A type complexes with in vivo selective metastasis reduction and in vitro invasion inhibition unrelated to cell cytotoxicity. Int J Oncol 21:1331–1338PubMedGoogle Scholar
  36. 36.
    Velders AH, Bergamo A, Alessio E, Zangrando E, Haasnoot JG, Casarsa C, Cocchietto M, Zorzet S, Sava G (2004) Synthesis and chemical-pharmacological characterization of the antimetastatic NAMI-A-type Ru(III) complexes (Hdmpt)[trans-RuCl4(dmso-S)(dmtp)], (Na)[trans-RuCl4(dmso-S)(dmtp)], and [mer-RuCl3(H2O) (dmso-S)(dmtp)] (dmpt = 5,7-Dimethyl[1,2,4]triazolo[1,5-a]pyrimidine). J Med Chem 47:1110–1121CrossRefPubMedGoogle Scholar
  37. 37.
    Allardyce CS, Dyson PJ, Ellis DJ, Heath SL (2001) [Ru(η 6-p-cymene)Cl2(pta)] (pta = 1,3,5-triaza-7-phosphatricyclo[]-decane): a water soluble compound that exhibits pH dependent DNA binding providing selectivity for diseased cells. Chem Commun 15:1396–1397CrossRefGoogle Scholar
  38. 38.
    Scolaro C, Bergamo A, Brescacin L, Delfino R, Cocchietto M, Laurenczy G, Geldbach TJ, Sava G, Dyson PJ (2005) In vitro and in vivo evaluation of ruthenium(II)-arene PTA complexes. J Med Chem 48:4161–4171CrossRefPubMedGoogle Scholar
  39. 39.
    Guichard SM, Else R, Reid E, Zeitlin B, Aird R, Muir M, Dodds M, Fiebig H, Sadler PJ, Jodrell DI (2006) Anti-tumor activity in non-small cell lung cancer models and toxicity profiles for novel ruthenium(II) based organo-metallic compounds. Biochem Pharmacol 71:408–415CrossRefPubMedGoogle Scholar
  40. 40.
    Biersack B, Zoldakova M, Effenberger K, Schobert R (2010) (Arene)Ru(II) complexes of epidermal growth factor receptor inhibiting tyrphostins with enhanced selectivity and cytotoxicity in cancer cells. Eur J Med Chem 45:1972–1975CrossRefPubMedGoogle Scholar
  41. 41.
    Yoneda T, Lyall RM, Alsina MM, Persons PE, Spada AP, Levitzki A, Zilberstein A, Mundy GR (1991) The antiproliferative effects of tyrosine kinase inhibitors tyrphostins on a human squamous cell carcinoma in vitro and in nude mice. Cancer Res 51:4430–4435PubMedGoogle Scholar
  42. 42.
    Sawaya R (2004) Intracranial metastases: current management strategies. Blackwell Futura, Malden, xiv. 497Google Scholar
  43. 43.
    Magda D, Lepp C, Gerasimchuk N, Lee I, Sessler JL, Lin A, Biaglow JE, Miller RA (2001) Redox cycling by motexafin gadolinium enhances cellular response to ionizing radiation by forming reactive oxigen species. Int J Radiat Oncol Biol Phys 51:1025–1036CrossRefPubMedGoogle Scholar
  44. 44.
    Hashemy SI, Ungerstedt JS, Avval FZ, Holmgren A (2006) Motexafin gadolinium, a tumor-selective drug targeting thioredoxin reductase and ribonucleotide reductase. J Biol Chem 281:10691–10697CrossRefPubMedGoogle Scholar
  45. 45.
    Magda D, Lecane P, Miller RA, Lepp C, Miles D, Mesfin M, Biaglow JE, Ho VV, Chawannakul D, Nagpal S, Karaman MW, Hacia JG (2007) Motexafin gadolinium disrupts zinc metabolism in human cancer cell lines. Cancer Res 65:3837–3845CrossRefGoogle Scholar
  46. 46.
    Richards GM, Mehta MP (2006) Motexafin gadolinium (MGd) in the treatment of brain metastases. Expert Opin Pharmacother 8:351–359CrossRefGoogle Scholar
  47. 47.
    Kovjazin R, Eldar T, Patya M, Vanichkin A, Lander HM, Novogrodsky A (2003) Ferrocene-induced lymphocyte activation and anti-tumor activity is mediated by redox-sensitive signalling. FASEB J 17:467–469PubMedGoogle Scholar
  48. 48.
    Mooney A, Corry AJ, Ní Ruairc C, Mahgoub T, O’Sullivan D, O’Donovan N, Crown J, Varughese S, Draper SM, Rai DK, Kenny PTM (2010) Synthesis, characterisation and biological evaluation of N-(ferrocenyl)naphthoyl amino acid esters as anticancer agents. Dalton Trans 39:8228–8239CrossRefPubMedGoogle Scholar
  49. 49.
    Ornelas C (2011) Application of ferrocene and its derivatives in cancer research. New J Chem 35:1973–1985CrossRefGoogle Scholar
  50. 50.
    Snegur LV, Nekrasov YS, Sergeeva NS, Zhilina ZV, Gumenyuk VV, Starikova ZA, Simenel AA, Morozova NB, Sviridova IK, Babin VN (2008) Ferrocenylalkyl azoles: bioactivity, synthesis, structure. Appl Organomet Chem 22:139–147CrossRefGoogle Scholar
  51. 51.
    Simenel AA, Morozova EA, Snegur LV, Zykova SI, Kachala VV, Ostrovskaya LA, Bluchterova NV, Fomina MM (2009) Simple route to ferrocenylalkyl nucleobases. Antitumor activity in vivo. Appl Organomet Chem 23:219–224CrossRefGoogle Scholar
  52. 52.
    Simenel AA, Dokuchaeva GA, Snegur LV, Rodionov AN, Ilyin MM, Zykova SI, Ostrovskaya LA, Bluchterova NV, Fomina MM, Rikova VA (2011) Ferrocene-modified thiopyrimidines: synthesis, enantiomeric resolution, antitumor activity. Appl Organomet Chem 25:70–75CrossRefGoogle Scholar
  53. 53.
    Paik J, Vogel S, Piantedosi R, Sykes A, Blaner WS, Swisshelm K (2000) 9-cis-retinoids: biosynthesis of 9-cis-retinoic acid. Biochemistry 39:8073–8084CrossRefPubMedGoogle Scholar
  54. 54.
    Wada A, Tode C, Hiraishi S, Tanaka Y, Ohfusa T (1995) Retinoids and related compounds; 18: a convenient synthesis of retinoic acid analogs having an anthraquinone ring. Synthesis 9:1107–1110CrossRefGoogle Scholar
  55. 55.
    Barua AB, Olson JA (1985) Preparation of retinamides by use of retinoyl fluoride. J Lipid Res 26:258–262PubMedGoogle Scholar
  56. 56.
    Barua AB, Huselton CA, Olson JA (1996) Synthesis of novel glucuronide conjugates of retinoic carboxylic acids. Synth Commun 26:1355–1361CrossRefGoogle Scholar
  57. 57.
    Nudelman A, Rephaeli A (2000) Novel mutual prodrug of retinoic and butyric acids with enhanced anticancer activity. J Med Chem 43:2962–2966CrossRefPubMedGoogle Scholar
  58. 58.
    Margaret CD, Curley J, Robert W, Kevin L, Tephly LA, Sikri V (2000) C-linked analogs of N-(4-hydroxyphenyl) retinamide. US/6117845Google Scholar
  59. 59.
    Long B, Liang S, Xin D, Yang Y, Xiang J (2009) Synthesis, characterization and in vitro antiproliferative activities of new 13-cis-retinoyl ferrocene derivatives. Eur J Med Chem 44:2572–2576CrossRefPubMedGoogle Scholar
  60. 60.
    Jaouen G, Top S, Vessières A, Leclercq G, McGlinchey MJ (2004) The first organometallic selective estrogen receptor modulators (SERMs) and their relevance to breast cancer. Curr Med Chem 11:2505–2517CrossRefPubMedGoogle Scholar
  61. 61.
    Top S, Vessières A, Leclercq G, Quivy J, Tang J, Vaissermann J, Huché M, Jaouen G (2003) Modification of the estrogenic properties of diphenols by the incorporation of ferrocene. Chem Eur J 9:5223–5236CrossRefPubMedGoogle Scholar
  62. 62.
    Ferreira AP, Ferreira da Silva JL, Duarte MT, Minas da Piedade MF, Robalo MP, Harjivan SG, Marzano C, Gandin V, Marques MM (2009) Synthesis and characterization of new organometallic benzo[b]thiophene derivatives with potential antitumor properties. Organometallics 28:5412–5423CrossRefGoogle Scholar
  63. 63.
    McMorris TC, Anchel M (1963) The structures of the basidiomycete metabolites illudin S and illudin M. J Am Chem Soc 85:831–832CrossRefGoogle Scholar
  64. 64.
    Kelner MJ, McMorris TC, Estes L, Wang W, Samson KM, Taetle R (1996) Efficacy of HMAF (MGI-114) in the MV522 metastatic lung carcinoma xenograft model nonresponsive to traditional anticancer agents. Invest New Drugs 14:161–167CrossRefPubMedGoogle Scholar
  65. 65.
    Dowell JE, Johnson DH, Rogers JS, Shyr Y, McCullough N, Krozely P, DeVore RF (2001) A phase II trial of 6-hydroxymethylacylfulvene (MGI-114, irofulven) in patients with advanced non-small cell lung cancer previously treated with chemotherapy. Invest New Drugs 19:85–88CrossRefPubMedGoogle Scholar
  66. 66.
    Knauer S, Biersack B, Zoldakova M, Effenberger K, Milius W, Schobert R (2009) Melanoma-specific ferrocene esters of the fungal cytotoxin illudin M. Anticancer Drugs 20:676–681CrossRefPubMedGoogle Scholar
  67. 67.
    Schobert R, Seibt S, Mahal K, Ahmad A, Biersack B, Effenberger-Neidnicht K, Padhye S, Sarkar FH, Mueller T (2011) Cancer selective metallocenedicarboxylates of the fungal cytotoxin illudin M. J Med Chem 54:6177–6182CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Organic Chemistry LaboratoryUniversity of BayreuthBayreuthGermany

Personalised recommendations