Advertisement

Balancing Behaviours—Designing with Combinatorial Equilibrium Models

  • Patrick Ole Ohlbrock
Chapter

Abstract

The present research tries to provide a theoretical framework (named Combinatorial Equilibrium Modelling), based on Graphic Statics and Graph Theory, which allows to shape and explore spatial equilibrated structures that are not restricted to typologies but are constituted by combinations of tension and compression forces. The focus of this paper is to demonstrate with the help of three different design scenarios how this novel interactive modelling approach can be used to negotiate between the structures different behavioural properties.

Notes

Acknowledgments

I would like to thank Pierluigi D’Acunto for his suggestions and critical comments during the development of this work and for his careful and patient editing.

References

  1. Au F (2012) A necessary resistance within architect-engineer collaboration, in interdisciplinary design—new lessons from architecture and engineering. p 237Google Scholar
  2. Block P (2009) Thrust network analysis, exploring three-dimensional equilibrium. PhD-Thesis, MITGoogle Scholar
  3. Bergermann R, Göppert K (2000) Das Speichenrad – Ein Konstruktionsprinzip für weitgespannte Dachkonstruktionen. Stahlbau 69(8):598Google Scholar
  4. Culmann C (1864) Die graphische Statik. Meyer & Zeller, ZurichMATHGoogle Scholar
  5. Greenwold S, Allen E (2003) Active statics. http://acg.media.mit.edu/people/simong/statics/Start.html
  6. Jasienski JP (2014) Various perspectives on the extension of graphic statics to the third dimension. In: Proceedings of the IASS 2014, p 1Google Scholar
  7. Kotnik T, D’Acunto P (2013) Operative diagramatology: structural folding for architectural design. In: Proceedings of the design modelling symposium, Berlin, p 195Google Scholar
  8. Lachauer L (2015) Interactive equilibrium modelling, PhD-Thesis, ETH Zurich, p 128Google Scholar
  9. Laffranchi M (1999) Zur Konzeption gekrümmter Brücken, PhD-Thesis, ETH ZurichGoogle Scholar
  10. Lesek F (2008) Precision as a virtue, as a necessity, and for its own sake. In: Precisions—architecture between sciences and the arts, p 153Google Scholar
  11. Moravanszky A (2008) The utopia of zero tolerance: the question of precision in architecture. In: Precisions—architecture between sciences and the arts, p 129Google Scholar
  12. Mueller C (2014) Computational exploration of the structural design space, PhD-Thesis, MIT, p 30Google Scholar
  13. Muttoni A, Schwartz J, Thürlimann B (1997) Bemessung von Betontragwerken mit Spannungsfeldern, BirkhäuserGoogle Scholar
  14. Ohlbrock PO (2015) Combinatorial equilibrium modelling. In: Proceedings of the IASS symposium 2015, paper acceptedGoogle Scholar
  15. Rippmann M, Lachauer L, Block P (2012) RhinoVAULT—designing funicular form with Rhino, computer software. http://block.arch.ethz.ch/tools/rhinovault/
  16. Schek HJ (1974) The force density method for form finding and computation of general networks. Comput Methods Appl Mech Eng 3(1):115–134MathSciNetCrossRefGoogle Scholar
  17. Schwartz J (2011) Tragwerkswissenschaft und Tragwerkslehre. In: Kooperation. Zur Zusammenarbeit von Ingenieur und Architekt. pp 243Google Scholar
  18. Van Mele T, Block P, Ernst C, Ballo L (2009–2012) eQUILIBRIUM. http://block.arch.ethz.ch/equilibrium/

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.ETH ZurichZurichSwitzerland

Personalised recommendations