Advertisement

Screen-Based Simulation, Virtual Reality, and Haptic Simulators

  • Todd P. Chang
  • James Gerard
  • Martin V. Pusic
Chapter
Part of the Comprehensive Healthcare Simulation book series (CHS)

Abstract

Screen-based simulations (SBSs) use available digital technology to represent patients, populations, or other healthcare encounters on a computer screen or a mobile tablet, smartphone, or other screen-based device. These include uses of virtual patients, virtual worlds, screen-based haptic trainers, and resource management simulators. Simulations using screens have advantages over mannequin-based simulations—the software is infinitely replicable, the simulation programs can be portable, they can be accessed asynchronously without a live instructor present, the software can be distributed to many devices, and the programming can track massive amounts of usage data. The screen, however, is the key disadvantage—for healthcare tasks that do not normally use a screen, SBSs lack functional fidelity. Additionally, upfront costs in programming and development can be prohibitive—both financially and in terms of time and labor. Examples of types of SBS that currently exist in pediatric health care, general health care, and non-health care applications are provided, as well as consideration in developing SBS as part of the pediatric simulation education repertoire.

Keywords

Screen-based simulation Virtual reality Haptic Virtual patient 

References

  1. 1.
    Ilgen J, Sherbino J, Cook DA. Technology-enhanced simulation in emergency medicine: a systematic review and meta-analysis. Acad Emerg Med. 2013;20:117–27.CrossRefPubMedGoogle Scholar
  2. 2.
    Graafland M, Schraagen JM, Schijven MP. Systematic review of serious games for medical education and surgical skills training. Br J Surg. 2012;99:1322–30.CrossRefPubMedGoogle Scholar
  3. 3.
    Kolb D. Experiential learning: experience as the source of learning and development. Englewood Cliffs: Prentice-Hall; 1984.Google Scholar
  4. 4.
    Feinberg R, Swygert KA, Haist SA, Dillon GF, Murray CT. The impact of postgraduate training on USMLE® Step 3® and its computer-based case simulation component. J Gen Intern Med. 2011;27(1):65–70.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Fall LH, Berman NB, Smith S, White CB, Woodhead JC, Olson AL. Multi-institutional development and utilization of a computer-assisted learning program for the pediatrics clerkship: the CLIPP Project. Acad Med. 2005;80(9):847–55. Epub 2005/08/27.CrossRefPubMedGoogle Scholar
  6. 6.
    Pusic M, Andrews JS, Kessler DO, Teng DG, Pecaric MR, Ruzal-Shapiro C, Boutis K. Prevalence of abnormal cases in an image bank affects the learning of radiograph interpretation. Med Educ. 2012;46:289–98.CrossRefPubMedGoogle Scholar
  7. 7.
    Cook D, Erwin PJ, Triola MM. Computerized virtual patients in health professions education: a systematic review and meta-analysis. Acad Med. 2010;85(10):1589–602.CrossRefPubMedGoogle Scholar
  8. 8.
    Cook DA, Mark TM. Virtual patients: a critical literature review and proposed next steps. Med Educ. 2009;43(4):303–11.CrossRefPubMedGoogle Scholar
  9. 9.
    Schwaab J, Kman N, Nagel R, Bahner D, Martin DR, Khandelwal S, Vozenilek J, Danforth DR, Nelson R. Using second life virtual simulation environment for mock oral emergency medicine examination. Acad Emerg Med. 2011;18:559–62.CrossRefPubMedGoogle Scholar
  10. 10.
    Wiecha J HR, Sternthal E, Merialdi M. Learning in a virtual world: experience with using second life for medical education. J Med Internet Res. 2010;12(1):e1.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Yao R, Heath T, Davies A, Forsyth T, Mitchell N, Hoberman P. Oculus VR Best Practices Guide. 2014. http://mediagoblin.tami.org.il/mgoblin_media/media_entries/657/OculusBestPractices.pdf. Accessed 30 Aug 2014.
  12. 12.
    Bodenheimer T. The future of primary care: transforming practice. N Engl J Med. 2008;359(20):2086, 9. Epub 2008/11/14.Google Scholar
  13. 13.
    Cheng A, Auerbach M, Hunt EA, Chang TP, Pusic M, Nadkarni V, Kessler D. Designing and conducting simulation-based research. Pediatrics. 2014;133(6):1091–101.CrossRefPubMedGoogle Scholar
  14. 14.
    Ellaway RH, Pusic M, Yavner S, Kalet AL. Context matters: emergent variability in an effectiveness trial of online teaching modules. Med Educ. 2014;48(4):386–96. Epub 2014/03/13.CrossRefPubMedGoogle Scholar
  15. 15.
    Brydges R, Dubrowski A, Regehr G. A new concept of unsupervised learning: directed self-guided learning in the health professions. Acad Med. 2010;85(10):S49–55.CrossRefGoogle Scholar
  16. 16.
    Brydges R, Carnahan H, Safir O, Dubrowski A. How effective is self-guided learning of clinical technical skills? It’s all about process. Med Educ. 2009;43(5):507–15.CrossRefPubMedGoogle Scholar
  17. 17.
    Jorna PGAM. Heart rate and workload variations in actual and simulated flight. Ergonomics. 1993;36(9):1043–54.CrossRefGoogle Scholar
  18. 18.
    Tourassi G, Voisin S, Paguit V, Krupinski E. Investigating the link between radiologists’ gaze, diagnostic decision, and image content. J Am Med Inform Assoc. 2013;20(6):1067–75. Epub 2013 Jun 20.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hamstra S, Brydges R, Hatala R, Zendejas B, Cook DA. Reconsidering fidelity in simulation-based training. Acad Med. 2014;89(3)387–92.CrossRefPubMedGoogle Scholar
  20. 20.
    Norman G, Dore K, Grierson L. The minimal relationship between simulation fidelity and transfer of learning. Med Educ. 2012;46(7):636–47.CrossRefPubMedGoogle Scholar
  21. 21.
    Rudolph J, Simon R, Raemer DB. Which reality matters? Questions on the path to high engagement in healthcare simulation. Simul Healthc. 2007;2(3):161–3.CrossRefPubMedGoogle Scholar
  22. 22.
    Dieckmann P, Gaba D, Rall M. Deepening the theoretical foundations of patient simulation as social practice. Simul Healthc. 2007;2(3):183–93.CrossRefPubMedGoogle Scholar
  23. 23.
    Maran N, Glavin RJ. Low- to high-fidelity simulation—a continuum of medical education? Med Educ. 2003;37(Suppl 1):22–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Pezzulo G, Barsalou LW, Cangelosi A, Fischer MH, McRae K, Spivey MJ. Computational grounded cognition: a new alliance between grounded cognition and computational modeling. Front Psychol. 2013;3(612):1–11.Google Scholar
  25. 25.
    Fayez R FL, Kaneva P, Fried GM. Testing the construct validity of the Simbionix GI Mentor II virtual reality colonoscopy simulator metrics: module matters. Surg Endosc. 2010;24(5):1060–5.CrossRefPubMedGoogle Scholar
  26. 26.
    Bedwell WL, Pavlas D, Heyne K, Lazzara EH, Salas E. Toward a taxonomy linking game attributes to learning: an empirical study. Simul Gaming. 2012;43(6):729–60.CrossRefGoogle Scholar
  27. 27.
    Pataki C, Pato MT, Sugar J, Rizzo AS, Parsons TD, St George C, Kenny P. Virtual patients as novel teaching tools in psychiatry. Acad Psychiatry. 2012;36:398–400.CrossRefPubMedGoogle Scholar
  28. 28.
    Williams K, Wryobeck J, Edinger W, McGrady A, Fors U, Zary N. Assessment of competencies by use of virtual patient technology. Acad Psychiatry. 2011;35(5):328–30.CrossRefPubMedGoogle Scholar
  29. 29.
    Stevens A, Hernandez J, Johnsen K, Dickerson R, Raij A, Harrison C, DiPietro M, Allen B, Ferdig R, Foti S, Jackson J, Shin M, Cendan J, Watson R, Duerson M, Lok B, Cohen M, Wagner P, Lind DS. The use of virtual patients to teach medical students history taking and communication skills. Am J Surg. 2006;191(6):806–11.CrossRefPubMedGoogle Scholar
  30. 30.
    Andreatta P, Maslowski E, Petty S, Shim W, Marsh M, Hall T, Stern S, Frankel J. Virtual reality triage training provides a viable solution for disaster-preparedness. Acad Emerg Med. 2010;17(8):870–6.CrossRefPubMedGoogle Scholar
  31. 31.
    Youngblood P, Harter PM, Srivastava S, Moffett S, Heinrichs WL, Dev P. Design, development, and evaluation of an online virtual emergency department for training trauma teams. Simul Healthc. 2008;3(3):146–53.CrossRefPubMedGoogle Scholar
  32. 32.
    Wendling A, Halan S, Tighe P, Le L, Euliano T, Lok B. Virtual humans versus standardized patients: which lead residents to more correct diagnoses? Acad Med. 2011;86(3):384–8.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Amichai-Hamberger Y, Wainapel G, Fox S. “On the internet no one know i’m an introvert’: extroversion, neuroticism, and internet interaction. CyberPsychol Behav. 2002;5(2):125–8.CrossRefGoogle Scholar
  34. 34.
    Alklind Taylor A-S, Backlund P, Niklasson L. The coaching cycle: a coaching-by-gaming approach in serious games. Simul Gaming. 2012;43(5):648–72.CrossRefGoogle Scholar
  35. 35.
    Ferlitsch A, Schoefl R, Puespoek A, Miehsler W, Schoeniger-Hekele M, Hofer H, Gangl A, Homoncik M. Effect of virtual endoscopy simulator training on performance of upper gastrointestinal endoscopy in patients: a randomized controlled trial. Endoscopy. 2010;42(12):1049–56.CrossRefPubMedGoogle Scholar
  36. 36.
    Blum M, Powers TW, Sundaresan S. Bronchoscopy simulator effectively prepares junior residents to competently perform basic clinical bronchoscopy. Ann Thorac Surg. 2004;78(1):287–91.CrossRefPubMedGoogle Scholar
  37. 37.
    Koch AD HJ, Schoon EJ, de Man RA, Kuipers EJ. A second-generation virtual reality simulator for colonoscopy: validation and initial experience. Endoscopy. 2008;40(9):735–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Davoudi M, Osann K, Colt HG. Validation of two instruments to assess technical bronchoscopic skill using virtual reality simulation. Respiration. 2008;76:92–101.CrossRefPubMedGoogle Scholar
  39. 39.
    Andreatta P, Woodrum DT, Birkmeyer JD, Yellamanchilli RK, Doherty GM, Gauger PG, Minter RM et al. Laparoscopic skills are improved with LapMentor training: results of a randomized, double-blinded study. Ann Surg. 2006;243(6):854–60.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Tanoue K IS, Konishi K, Yasunaga T, Okazaki K, Yamaguchi S, Yoshida D, Kakeji Y, Hashizume M. Effectiveness of endoscopic surgery training for medical students using a virtual reality simulator versus a box trainer: a randomized controlled trial. Surg Endosc. 2008;22(4):985–90.CrossRefPubMedGoogle Scholar
  41. 41.
    Hodge T, Deakin JM. Deliberate practice and expertise in the martial arts: the role of context in motor recall. 1998;20(3):260–79.Google Scholar
  42. 42.
    Lehmann A, Ericsson KA. Research on expert performance and deliberate practice: implications for the education of amateur musicians and music students. Psychomusicology. 1997;16(1–2):40–58.CrossRefGoogle Scholar
  43. 43.
    Kessler D, Auerbach M, Pusic M, Tunik MG, Foltin JC. A randomized trial of simulation-based deliberate practice for infant lumbar puncture skills. Simul Healthc. 2011;6(4):197–203.CrossRefPubMedGoogle Scholar
  44. 44.
    Wayne D, Barsuk JH, O’Leary KJ, Fudala MJ, McGaghie WC. Mastery learning of thoracentesis skills by internal medicine residents using simulation technology and deliberate practice. J Hosp Med. 2008;3(1):48–54.CrossRefPubMedGoogle Scholar
  45. 45.
    Ericsson K. Deliberate practice and acquisition of expert performance: a general overview. Acad Emerg Med. 2008;15(11):988–94.CrossRefPubMedGoogle Scholar
  46. 46.
    Ericsson K. Deliberate practice and the acquisition and maintenance of expert performance in medicine and related domains. Acad Med. 2004;79(Suppl 10 ):S70–81.CrossRefPubMedGoogle Scholar
  47. 47.
    Garris R, Ahlers R, Driskell JE. Games, motivation, and learning: a research and practice model. Simul Gaming. 2002;43(1):118–32.Google Scholar
  48. 48.
    Cohen J, Cohen SA, Vora KC, Xue X, Burdick JS, Bank S, et al. Multicenter, randomized, controlled trial of virtual-reality simulator training in acquisition of competency in colonoscopy. Gastrointest Endosc. 2006;64(3):361–8. Epub 2006/08/23.CrossRefPubMedGoogle Scholar
  49. 49.
    Luciano C, Banerjee PP, Sorenson JM, FOley KT, Ansari SA, Rizzi S, Germanwala AV, Kranzler L, Chittiboina P, Roitberg BZ. Percutaneous spinal fixation simulation with virtual reality and haptics. Neurosurgery. 2013;72(Suppl 1):89–96.CrossRefPubMedGoogle Scholar
  50. 50.
    Posel N, Fleiszer D, Shore BM. 12 tips: guidelines for authoring virtual patient cases. Med Teach. 2009;31:701–8.CrossRefPubMedGoogle Scholar
  51. 51.
    McGee J. Designing, developing and implementing branched-narrative virtual patients for medical education, training and assessment: a guide for authors of virtual patients. http://vpsim.pitt.edu/shell/documents/Virtual_Patient_Authoring_Best_Practices.pdf. Accessed 1 Sept 2014 [16p].
  52. 52.
    Triola M, Campion N, McGee JB, Albright S, Greene P, Smothers V, Ellaway R. An XML standard for virtual patients: exchanging case-based simulations in medical education. AMIA Annu Symp Proc. 2007;2007:741–5.PubMedCentralGoogle Scholar
  53. 53.
    Medbiquitous Consortium Virtual Patient Implementors. (World Wide Web) 2013. http://www.medbiq.org/virtual_patient/implementers. Accessed 30 Aug 2014.
  54. 54.
    Dabbagh N. Pedagogical models for E-Learning: a theory-based design framework. Int J Technol Teach Learn. 2005;1(1):25–44.Google Scholar
  55. 55.
    Moreno-Ger P, Torrente J, Hsieh YG, Lester WT. Usability testing for serious games: making informed design decisions with user data. Adv Hum-Computer Interact. 2012;2012:13.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Pediatrics, Division of Emergency Medicine & TransportUniversity of Southern California Keck School of Medicine, Children’s Hospital Los AngelesLos AngelesUSA
  2. 2.Department of Pediatrics, Division of Emergency MedicineSaint Louis University School of Medicine, SSM Cardinal Glennon Children’s Medical CenterSt. LouisUSA
  3. 3.Department of Emergency MedicineNew York University School of MedicineNew YorkUSA

Personalised recommendations