Part of the Springer Theses book series (Springer Theses)


In this thesis we discussed the characterization of sets of classical and quantum probabilities for different measurement scenarios and different, physically motivated, hidden variable models. More precisely, we discussed local [1], noncontextual [2] and macrorealist [3] hidden variable models and the characterization of their corresponding sets of allowed probabilities, whereas in the quantum case we focused on the characterization of probabilities arising from sequences of projective measurements.


  1. 1.
    J.S. Bell, Physics 1, 195 (1964)Google Scholar
  2. 2.
    S. Kochen, E.P. Specker, J. Math. Mech. 17, 59 (1967). doi: 10.1512/iumj.1968.17.17004 Google Scholar
  3. 3.
    A.J. Leggett, A. Garg, Phys. Rev. Lett. 54, 857 (1985). doi: 10.1103/PhysRevLett.54.857 Google Scholar
  4. 4.
    B.C. Cirel’son, Lett. Math. Phys. 4, 93 (1980)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    A. Cabello, Phys. Rev. Lett. 110, 060402 (2013). doi: 10.1103/PhysRevLett.110.060402
  6. 6.
    T. Fritz, A.B. Sainz, R. Augusiak, J. Bohr Brask, R. Chaves, A. Leverrier, A. Acín, Nature Commun. 4, 2263 (2013). doi: 10.1038/ncomms3263
  7. 7.
    G. Brassard, H. Buhrman, N. Linden, A. A. Méthot, A. Tapp, F. Unger, Phys. Rev. Lett. 96, 250401 (2006). doi: 10.1103/PhysRevLett.96.250401
  8. 8.
    M. Pawłowski, T. Paterek, D. Kaszlikowski, V. Scarani, A. Winter, M. Żukowski, Nature (London) 461, 1101 (2009). doi: 10.1038/nature08400 Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.University of SiegenSiegenGermany

Personalised recommendations