Advertisement

Dimension Witnesses

Chapter
  • 401 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

The recent progress in the experimental control and manipulation of physical systems at the quantum level opens new possibilities (e.g., quantum communication, computation, and simulation), but, at the same time, demands the development of novel theoretical tools of analysis. There are already tools which allow us to recognize quantum entanglement and certify the usefulness of quantum states for quantum information processing tasks [1, 2]. However, on a more fundamental level, there are still several problems which have to be addressed. For example, how can one efficiently test whether measurements actually access all the desired energy levels of an ion? How to certify that the different paths of photons in an interferometer can be used to simulate a given multi-dimensional quantum system? Similar questions arise in the analysis of experiments with orbital angular momentum, where high-dimensional entanglement can be produced [3, 4], or in experiments with electron spins at nitrogen-vacancy centers in diamond, where the quantumness of the measurements should be certified [5].

Keywords

Witness Property Nitrogen-vacancy Centers Desired Energy Level Leggett-Garg Inequality NCHV Theories 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009). doi: 10.1103/RevModPhys.81.865 ADSCrossRefGoogle Scholar
  2. 2.
    O. Gühne, G. Tóth, Phys. Rep. 474, 1 (2009). doi: 10.1016/j.physrep.2009.02.004 ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    G. Molina-Terriza, J.P. Torres, L. Torner, Nat. Phys. 3, 305 (2007). doi: 10.1038/nphys607 CrossRefGoogle Scholar
  4. 4.
    A.C. Dada, J. Leach, G.S. Buller, M.J. Padgett, E. Andersson, Nat. Phys. 7, 677 (2011). doi: 10.1038/nphys1996 CrossRefGoogle Scholar
  5. 5.
    P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, J. Wrachtrup, Science 320, 1326 (2008). doi: 10.1126/science.1157233 ADSCrossRefGoogle Scholar
  6. 6.
    N. Brunner, S. Pironio, A. Acín, N. Gisin, A. Méthot, V. Scarani, Phys. Rev. Lett. 100, 210503 (2008). doi: 10.1103/PhysRevLett.100.210503 ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    T. Vértesi, K.F. Pál, Phys. Rev. A 79, 042106 (2009). doi: 10.1103/PhysRevA.79.042106 ADSCrossRefGoogle Scholar
  8. 8.
    S. Wehner, M. Christandl, A.C. Doherty, Phys. Rev. A 78, 062112 (2008). doi: 10.1103/PhysRevA.78.062112 ADSCrossRefGoogle Scholar
  9. 9.
    R. Gallego, N. Brunner, C. Hadley, A. Acín, Phys. Rev. Lett. 105, 230501 (2010). doi: 10.1103/PhysRevLett.105.230501 ADSCrossRefGoogle Scholar
  10. 10.
    N. Brunner, M. Navascus, T. Vrtesi, Phys. Rev. Lett. 110, 150501 (2013). doi: 10.1103/PhysRevLett.110.150501 ADSCrossRefGoogle Scholar
  11. 11.
    M. Hendrych, R. Gallego, M. Mičuda, N. Brunner, A. Acín, J.P. Torres, Nat. Phys. 8, 588 (2012). doi: 10.1038/nphys2334 CrossRefGoogle Scholar
  12. 12.
    J. Ahrens, P. Badzia̧g, A. Cabello, M. Bourennane, Nat. Phys. 8, 592 (2012). doi: 10.1038/nphys2333 CrossRefGoogle Scholar
  13. 13.
    M.M. Wolf, D. Pérez-García, Phys. Rev. Lett. 102, 190504 (2009). doi: 10.1103/PhysRevLett.102.190504 ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    J.S. Bell, Rev. Mod. Phys. 38, 447 (1966). doi: 10.1103/RevModPhys.38.447 ADSCrossRefGoogle Scholar
  15. 15.
    S. Kochen, E.P. Specker, J. Math. Mech. 17, 59 (1967). doi: 10.1512/iumj.1968.17.17004 MathSciNetGoogle Scholar
  16. 16.
    A.M. Gleason, J. Math. Mech. 6, 885 (1957)MathSciNetGoogle Scholar
  17. 17.
    E.P. Specker, Dialectica 14, 239 (1960). doi: 10.1111/dltc.1960.14.issue-2-3 MathSciNetCrossRefGoogle Scholar
  18. 18.
    Y.-C. Liang, R.W. Spekkens, H.M. Wiseman, Phys. Rep. 506, 1 (2011). doi: 10.1016/j.physrep.2011.05.001 ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    O. Gühne, C. Budroni, A. Cabello, M. Kleinmann, J.-Å. Larsson, Phys. Rev. A 89, 062107 (2014). doi: 10.1103/PhysRevA.89.062107 ADSCrossRefGoogle Scholar
  20. 20.
    C. Budroni, C. Emary, Phys. Rev. Lett. 113, 050401 (2014). doi: 10.1103/PhysRevLett.113.050401 ADSCrossRefGoogle Scholar
  21. 21.
    A.A. Klyachko, M.A. Can, S. Binicioğlu, A.S. Shumovsky, Phys. Rev. Lett. 101, 020403 (2008). doi: 10.1103/PhysRevLett.101.020403 ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    A. Peres, Quantum Theory: Concepts and Methods (Kluwer, Dordrecht, 1993)zbMATHGoogle Scholar
  23. 23.
    M. Araújo, M.T. Quintino, C. Budroni, M. Terra Cunha, A. Cabello, Phys. Rev. A 88, 022118 (2013). doi: 10.1103/PhysRevA.88.022118
  24. 24.
    R. Łapkiewicz, P. Li, C. Schaeff, N.K. Langford, S. Ramelow, M. Wieśniak, A. Zeilinger, Nature (London) 474, 490 (2011). doi: 10.1038/nature10119 CrossRefGoogle Scholar
  25. 25.
    J. Ahrens, E. Amselem, A. Cabello, M. Bourennane, Sci. Rep. 3, 2170 (2013). doi: 10.1038/srep02170 ADSCrossRefGoogle Scholar
  26. 26.
    O. Gühne, M. Kleinmann, A. Cabello, J.-Å Larsson, G. Kirchmair, F. Zähringer, R. Gerritsma, C.F. Roos. Phys. Rev. A 81, 022121 (2010). doi: 10.1103/PhysRevA.81.022121
  27. 27.
    T. Fritz, New J. Phys. 12, 083055 (2010). doi: 10.1088/1367-2630/12/8/083055 Google Scholar
  28. 28.
    A. Cabello, Phys. Rev. Lett. 101, 210401 (2008). doi: 10.1103/PhysRevLett.101.210401 ADSCrossRefGoogle Scholar
  29. 29.
    A. Peres, Phys. Lett. A 151, 107 (1990). doi: 10.1016/0375-9601(90)90172-K ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    N.D. Mermin, Phys. Rev. Lett. 65, 3373 (1990). doi: 10.1103/PhysRevLett.65.3373 ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    G. Kirchmair, F. Zähringer, R. Gerritsma, M. Kleinmann, O. Gühne, A. Cabello, R. Blatt, C.F. Roos, Nature (London) 460, 494 (2009). doi: 10.1038/nature08172 ADSCrossRefGoogle Scholar
  32. 32.
    E. Amselem, M. Rådmark, M. Bourennane, A. Cabello, Phys. Rev. Lett. 103, 160405 (2009). doi: 10.1103/PhysRevLett.103.160405 ADSCrossRefGoogle Scholar
  33. 33.
    O. Moussa, C.A. Ryan, D.G. Cory, R. Laflamme, Phys. Rev. Lett. 104, 160501 (2010). doi: 10.1103/PhysRevLett.104.160501 ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    C. Budroni, T. Moroder, M. Kleinmann, O. Gühne, Phys. Rev. Lett. 111, 020403 (2013). doi: 10.1103/PhysRevLett.111.020403 ADSCrossRefGoogle Scholar
  35. 35.
    S. Yu, C.H. Oh, Phys. Rev. Lett. 108, 030402 (2012). doi: 10.1103/PhysRevLett.108.030402 ADSCrossRefGoogle Scholar
  36. 36.
    M. Kleinmann, C. Budroni, J.-Å. Larsson, O. Gühne, A. Cabello, Phys. Rev. Lett. 109, 250402 (2012). doi: 10.1103/PhysRevLett.109.250402 ADSCrossRefGoogle Scholar
  37. 37.
    A. Cabello, Phys. Rev. A 82, 032110 (2010). doi: 10.1103/PhysRevA.82.032110 ADSCrossRefGoogle Scholar
  38. 38.
    A.J. Leggett, A. Garg, Phys. Rev. Lett. 54, 857 (1985). doi: 10.1103/PhysRevLett.54.857 ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    R.E. George, L.M. Robledo, O.J.E. Maroney, M.S. Blok, H. Bernien, M.L. Markham, D.J. Twitchen, J.J.L. Morton, G.A.D. Briggs, R. Hanson, Proc. Natl. Acad. Sci. USA 110, 3777 (2013). doi: 10.1073/pnas.1208374110 ADSCrossRefGoogle Scholar
  40. 40.
    J. Kofler, Č. Brukner, Phys. Rev. Lett. 99, 180403 (2007). doi: 10.1103/PhysRevLett.99.180403 ADSCrossRefGoogle Scholar
  41. 41.
    N. Lambert, R. Johansson, F. Nori, Phys. Rev. B 84, 245421 (2011). doi: 10.1103/PhysRevB.84.245421 ADSCrossRefGoogle Scholar
  42. 42.
    M.M. Wilde, J.M. McCracken, A. Mizel, Proc. R. 5 Soc. A 466, 1347 (2010). doi: 10.1098/rspa.2009.0575 Google Scholar
  43. 43.
    B. Dakić, T. Paterek, Č. Brukner, New J. Phys. 16, 023028 (2014). doi: 10.1088/1367-2630/16/2/023028 Google Scholar
  44. 44.
    G. Lüders, Ann. Phys. (Leipzig) 8, 322 (1951)Google Scholar
  45. 45.
    J. von Neumann, Mathematische Grundlagen der Quantenmechanik (Springer, Berlin, 1932)zbMATHGoogle Scholar
  46. 46.
    G. Lüders, English translation and discussion by K.A. Kirkpatrick. Ann. Phys. 15, 663 (2006). doi: 10.1002/andp.200610207 Google Scholar
  47. 47.
    B.C. Cirel’son, Lett. Math. Phys. 4, 93 (1980)ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    M. Markiewicz, P. Kurzynski, J. Thompson, S.-Y. Lee, A. Soeda, T. Paterek, D. Kaszlikowski, Phys. Rev. A 89, 042109 (2014). doi: 10.1103/PhysRevA.89.042109 ADSCrossRefGoogle Scholar
  49. 49.
    S. Das, S. Aravinda, R. Srikanth, D. Home, Europhys. Lett. 104, 60006 (2013). doi: 10.1209/0295-5075/104/60006 ADSCrossRefGoogle Scholar
  50. 50.
    Č. Brukner, S. Taylor, S. Cheung, V. Vedral (2004). arXiv:quant-ph/0402127
  51. 51.
    S. Marcovitch and B. Reznik (2011). arXiv:1107.2186
  52. 52.
    O. Oreshkov, F. Costa, Č. Brukner, Nat. Commun. 3, 1092 (2012). doi: 10.1038/ncomms2076 ADSCrossRefGoogle Scholar
  53. 53.
    J. Fitzsimons, J. Jones, V. Vedral (2013). arXiv:1302.2731
  54. 54.
    G.C. Hegerfeldt, R. Sala Mayato. Phys. Rev. A 85, 032116 (2012). doi: 10.1103/PhysRevA.85.032116
  55. 55.
    S.L. Braunstein C.M. Caves, Nucl. Phys. B Proc. Suppl. 6, 211 (1989). doi: 10.1016/0920-5632(89)90441-6 Google Scholar
  56. 56.
    S. Wehner, Phys. Rev. A 73, 022110 (2006). doi: 10.1103/PhysRevA.73.022110 ADSCrossRefGoogle Scholar
  57. 57.
    M. Barbieri, Phys. Rev. A 80, 034102 (2009). doi: 10.1103/PhysRevA.80.034102 ADSCrossRefGoogle Scholar
  58. 58.
    S. Popescu, D. Rohrlich, Found. Phys. 24, 379 (1994). doi: 10.1007/BF02058098 Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.University of SiegenSiegenGermany

Personalised recommendations