Skip to main content

Quantum Bounds for Temporal Correlations

  • Chapter
  • First Online:
Temporal Quantum Correlations and Hidden Variable Models

Part of the book series: Springer Theses ((Springer Theses))

  • 449 Accesses

Abstract

The assumptions of realism and locality lead to bounds on the correlations between observable quantities—the Bell inequalities, and these bounds are violated in quantum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.F. Clauser, M.A. Horne, A. Shimony, R.A. Holt, Phys. Rev. Lett. 23, 880 (1969). doi:10.1103/PhysRevLett.23.880

    Google Scholar 

  2. B.C. Cirel’son, Lett. Math. Phys. 4, 93 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  3. S. Popescu, D. Rohrlich, Found. Phys. 24, 379 (1994). doi:10.1007/BF02058098

    Article  ADS  MathSciNet  Google Scholar 

  4. A. Cabello, Phys. Rev. Lett. 110, 060402 (2013). doi:10.1103/PhysRevLett.110.060402

    Article  ADS  Google Scholar 

  5. T. Fritz, A.B. Sainz, R. Augusiak, J. Bohr Brask, R. Chaves, A. Leverrier, A. AcĂ­n, Nat. Commun. 4, 2263 (2013). doi:10.1038/ncomms3263

  6. G. Brassard, H. Buhrman, N. Linden, A.A. MĂ©thot, A. Tapp, F. Unger, Phys. Rev. Lett. 96, 250401 (2006). doi:10.1103/PhysRevLett.96.250401

    Article  ADS  MathSciNet  Google Scholar 

  7. M. Pawłowski, T. Paterek, D. Kaszlikowski, V. Scarani, A. Winter, M. Żukowski, Nature (London) 461, 1101 (2009). doi:10.1038/nature08400

    Article  ADS  Google Scholar 

  8. D. Gross, M. MĂĽller, R. Colbeck, C.O. Dahlsten, Phys. Rev. Lett. 104, 080402 (2010). doi:10.1103/PhysRevLett.104.080402

    Article  ADS  Google Scholar 

  9. M. Navascués, Y. Guryanova, M.J. Hoban, A. Acín (2014) arXiv:1403.4621

  10. T. Fritz, New J. Phys 12, 083055 (2010). doi:10.1088/1367-2630/12/8/083055

    Article  ADS  Google Scholar 

  11. S. Kochen, E.P. Specker, J. Math. Mech. 17, 59 (1967). doi:10.1512/iumj.1968.17.17004

    MathSciNet  Google Scholar 

  12. A.J. Leggett, A. Garg, Phys. Rev. Lett. 54, 857 (1985). doi:10.1103/PhysRevLett.54.857

    Article  ADS  MathSciNet  Google Scholar 

  13. A.A. Klyachko, M.A. Can, S. BinicioÄźlu, A.S. Shumovsky, Phys. Rev. Lett. 101, 020403 (2008). doi:10.1103/PhysRevLett.101.020403

    Article  ADS  MathSciNet  Google Scholar 

  14. M. Barbieri, Phys. Rev. A 80, 034102 (2009). doi:10.1103/PhysRevA.80.034102

    Article  ADS  Google Scholar 

  15. J. Kofler, C. Brukner, Phys. Rev. Lett. 101, 090403 (2008). doi:10.1103/PhysRevLett.101.090403

    Article  ADS  Google Scholar 

  16. T. Fritz, J. Math. Phys. 51, 052103 (2010). doi:10.1063/1.3377969

    Article  ADS  MathSciNet  Google Scholar 

  17. C. Budroni, T. Moroder, M. Kleinmann, O. GĂĽhne, Phys. Rev. Lett. 111, 020403 (2013). doi:10.1103/PhysRevLett.111.020403

    Article  ADS  Google Scholar 

  18. J. von Neumann, Mathematische Grundlagen der Quantenmechanik (Springer, Berlin, 1932)

    MATH  Google Scholar 

  19. G. LĂĽders, Ann. Phys. (Leipzig) 8, 322 (1951)

    Google Scholar 

  20. S. Wehner, Phys. Rev. A 73, 022110 (2006). doi:10.1103/PhysRevA.73.022110

  21. L. Vandenberghe, S. Boyd, SIAM Rev. 38, 49 (1996). doi:10.1137/1038003

    Article  MathSciNet  Google Scholar 

  22. Y.-C. Liang, R.W. Spekkens, H.M. Wiseman, Phys. Rep. 506, 1 (2011). doi:10.1016/j.physrep.2011.05.001

    Article  ADS  MathSciNet  Google Scholar 

  23. M. AraĂşjo, M.T. Quintino, C. Budroni, M. Terra Cunha, A. Cabello, Phys. Rev. A 88, 022118 (2013). doi:10.1103/PhysRevA.88.022118

    Article  ADS  Google Scholar 

  24. M. Navascués, S. Pironio, A. Acín, Phys. Rev. Lett. 98 (2007). doi:10.1103/PhysRevLett.98.010401

  25. M. Navascués, S. Pironio, A. Acín, New J. Phys. 10 (2008). doi:10.1088/1367-2630/10/7/073013

    Google Scholar 

  26. A.C. Doherty, Y.-C. Liang, B. Toner, S. Wehner, in Proceedings of IEEE Conference on Computational Complexity, College Park, MD, 2008 (IEEE, New York 2008), p.199

    Google Scholar 

  27. O. GĂĽhne, C. Budroni, A. Cabello, M. Kleinmann, J.-Ă…. Larsson, Phys. Rev. A 89, 062107 (2014). doi:10.1103/PhysRevA.89.062107

    Article  ADS  Google Scholar 

  28. K.F. Pál, T. Vértesi, Phys. Rev. A 82, 022116 (2010). doi:10.1103/PhysRevA.82.022116

    Article  ADS  Google Scholar 

  29. T. Moroder, J.-D. Bancal, Y.-C. Liang, M. Hofmann, O. GĂĽhne, Phys. Rev. Lett. 111, 030501 (2013). doi:10.1103/PhysRevLett.111.030501

    Article  ADS  Google Scholar 

  30. S. Yu, C.H. Oh, Phys. Rev. Lett. 108, 030402 (2012). doi:10.1103/PhysRevLett.108.030402

    Article  ADS  Google Scholar 

  31. A. Cabello (2011). arXiv:1112.5149

  32. M. Kleinmann, C. Budroni, J.-Ă…. Larsson, O. GĂĽhne, A. Cabello, Phys. Rev. Lett. 109, 250402 (2012). doi:10.1103/PhysRevLett.109.250402

    Article  ADS  Google Scholar 

  33. M.L. Almeida, J.-D. Bancal, N. Brunner, A. AcĂ­n, N. Gisin, S. Pironio, Phys. Rev. Lett. 104, 230404 (2010). doi:10.1103/PhysRevLett.104.230404

    Article  ADS  Google Scholar 

  34. R.M. Gray, Found. Trends Commun. Inf. Theory 2, 155 (2006)

    Article  Google Scholar 

  35. B.S. Tsirel’son, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 142, 174 (1985). (Russian, English translation [36])

    Google Scholar 

  36. B.S. Tsirel’son, J. Soviet Math. 36, 557 (1987)

    Article  Google Scholar 

  37. O. Bratteli and D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics, vol. 2 (Springer, 1997)

    Google Scholar 

  38. S. Pironio, M. Navascués, A. Acín, SIAM J. Optim. 20(5), 2157 (2010). doi:10.1137/090760155

    Article  MathSciNet  Google Scholar 

  39. A. Cabello, S. Severini, A. Winter (2010). arXiv:1010.2163

  40. A. Cabello, S. Severini, A. Winter, Phys. Rev. Lett. 112, 040401 (2014). doi:10.1103/PhysRevLett.112.040401

    Article  ADS  Google Scholar 

  41. L. Lovász, I.E.E.E. Trans, Inf. Theory 25, 1 (1979). doi:10.1109/TIT.1979.1055985

    Article  Google Scholar 

  42. L. Lovász, Geometric Representations of Graphs, (unpublished). www.cs.elte.hu/âlovasz/geomrep.pdf

  43. S.L. Braunstein, C.M. Caves, Nucl. Phys. B, Proc. Suppl. 6, 211 (1989). doi:10.1016/0920-5632(89)90441-6

    Google Scholar 

  44. M. Reed, B. Simon, Methods of Modern Mathematical Physics, vol. I, (Academic Press, New York, 1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costantino Budroni .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Budroni, C. (2016). Quantum Bounds for Temporal Correlations. In: Temporal Quantum Correlations and Hidden Variable Models. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-24169-2_4

Download citation

Publish with us

Policies and ethics