Advertisement

Introduction

Chapter
  • 385 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

The notion of probability is intimately related to the notion of uncertainty, and the latter arises in the description of physical systems at various levels and in different ways. In particular, the probabilistic structure arising in quantum mechanics (QM) has been recognized to be of a rather different kind with respect to its classical counterpart.

Keywords

Boolean Algebra Bell Inequality Semidefinite Program CHSH Inequality Local Hide Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. Peres, Quantum Theory: Concepts and Methods (Kluwer, Dordrecht, 1993)zbMATHGoogle Scholar
  2. 2.
    A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777 (1935). doi: 10.1103/PhysRev.47.777 Google Scholar
  3. 3.
    J.S. Bell, Physics 1, 195 (1964)Google Scholar
  4. 4.
    J.S. Bell, Rev. Mod. Phys. 38, 447 (1966). doi: 10.1103/RevModPhys.38.447 Google Scholar
  5. 5.
    S. Kochen, E.P. Specker, J. Math. Mech. 17, 59 (1967). doi: 10.1512/iumj.1968.17.17004 Google Scholar
  6. 6.
    A. Fine, Phys. Rev. Lett. 48, 291 (1982). doi: 10.1103/PhysRevLett.48.291 Google Scholar
  7. 7.
    I. Pitowsky, J. Math. Phys. 27, 1556 (1986). doi: 10.1063/1.527066 Google Scholar
  8. 8.
    A.J. Leggett, A. Garg, Phys. Rev. Lett. 54, 857 (1985). doi: 10.1103/PhysRevLett.54.857 Google Scholar
  9. 9.
    M.A. Nielsen, I.L. Chuang, Quantum Com- putation and Quantum Information (Cambridge University Press, Cambridge 2000)Google Scholar
  10. 10.
    P.W. Shor, SIAM J. Comput., 26 (5), 148 (1997). doi: 10.1137/S0097539795293172 Google Scholar
  11. 11.
    S. Loyd, Science 273, 1073 (1996). doi: 10.1126/science.273.5278.1073 Google Scholar
  12. 12.
    A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, V. Scarani, Phys. Rev.Lett. 98, 230501 (2007). doi: 10.1103/PhysRevLett.98.230501
  13. 13.
    R. Raussendorf, Phys. Rev. A 88, 022322 (2013). doi: 10.1103/PhysRevA.88.022322
  14. 14.
    M. Howard, J. Wallman, V. Veitch, J. Emerson, Nature (London) 510, 351 (2014). doi: 10.1038/nature13460 Google Scholar
  15. 15.
    I. Pitowsky, Quantum Probability - Quantum Logic, Lecture Notes in Physics (Springer, Berlin, 1989)zbMATHGoogle Scholar
  16. 16.
    A.N. Kolmogorov, Foundations of the Theory of Probability (Chelsea Publishing Company, New York, 1950)zbMATHGoogle Scholar
  17. 17.
    M. Reed, B. Simon, Methods of Modern Mathematical Physics, vol. I (Academic Press, New York, 1972)zbMATHGoogle Scholar
  18. 18.
    L. de Broglie, An Introduction to the Study of Wave Mechanics (E. P. Dutton and Company Inc, New York, 1930)zbMATHGoogle Scholar
  19. 19.
    D. Bohm, Phys. Rev. 85, 166,180 (1952). doi: 10.1103/PhysRev.85.166 10.1103/PhysRev.85.180 Google Scholar
  20. 20.
    J. von Neumann, Mathematische Grundlagen der Quantenmechanik (Springer, Berlin, 1932)zbMATHGoogle Scholar
  21. 21.
    J.M. Jauch, C. Piron, Helv. Phys. Acta 36, 827 (1963)MathSciNetGoogle Scholar
  22. 22.
    A.M. Gleason, J. Math. Mech. 6, 885 (1957)MathSciNetGoogle Scholar
  23. 23.
    R.W. Spekkens (2013). arXiv:1312.3667
  24. 24.
    T. Fritz, New J. Phys. 12, 083055 (2010). doi: 10.1088/1367-2630/12/8/083055 Google Scholar
  25. 25.
    C. Budroni, T. Moroder, M. Kleinmann, O. Gühne, Phys. Rev.Lett. 111, 020403 (2013). doi: 10.1103/PhysRevLett.111.020403
  26. 26.
    C. Budroni, C. Emary, Phys. Rev. Lett. 113, 050401 (2014). doi: 10.1103/PhysRevLett.113.050401
  27. 27.
    J.F. Clauser, M.A. Horne, A. Shimony, R.A. Holt, Phys. Rev. Lett. 23, 880 (1969). doi: 10.1103/PhysRevLett.23.880 Google Scholar
  28. 28.
    S. Freedman, J. Clauser, Phys. Rev. Lett. 28, 938 (1972), doi: 10.1103/PhysRevLett.28.938 Google Scholar
  29. 29.
    E. Fry, R. Thompson, Phys. Rev. Lett. 37, 465 (1976). doi: 10.1103/PhysRevLett.37.465 Google Scholar
  30. 30.
    A. Aspect, P. Grangier, G. Roger, Phys. Rev. Lett. 47, 460 (1981). doi: 10.1103/PhysRevLett.47.460 Google Scholar
  31. 31.
    A. Aspect, P. Grangier, G. Roger, Phys. Rev. Lett. 49, 91 (1982). doi: 10.1103/PhysRevLett.49.91 Google Scholar
  32. 32.
    A. Aspect, J. Dalibard, and G. Roger, Phys. Rev.Lett. 49, 1804 (1982). doi: 10.1103/PhysRevLett.49.1804 Google Scholar
  33. 33.
    M.A. Rowe, D. Kielpinski, V. Meyer, C.A. Sackett, W.M. Itano, C. Monroe, D.J. Wineland, Nature (London) 409, 791 (2001). doi: 10.1038/35057215 Google Scholar
  34. 34.
    M. Giustina et al., Nature (London) 497, 227 (2014). doi: 10.1038/nature12012 Google Scholar
  35. 35.
    A.A. Klyachko, M.A. Can, S. Binicioğlu, A.S. Shumovsky, Phys. Rev. Lett. 101, 020403 (2008). doi: 10.1103/PhysRevLett.101.020403
  36. 36.
    G. Birkhoff, J. von Neumann, Ann. Math. 37, (1936)Google Scholar
  37. 37.
    C. Budroni, G. Morchio, J. Math. Phys. 51, 122205 (2010). doi: 10.1063/1.3523478 Google Scholar
  38. 38.
    S. Popescu, D. Rohrlich, Found. Phys. 24, 379 (1994). doi: 10.1007/BF02058098 Google Scholar
  39. 39.
    P. Kurzyński, R. Ramanathan, D. Kaszlikowski, Phys. Rev. Lett. 109, 020404 (2012). doi: 10.1103/PhysRevLett.109.020404
  40. 40.
    E.P. Specker, Dialectica 14, 239 (1960). doi: 10.1111/dltc.1960.14.issue-2-3
  41. 41.
    A. Cabello (2012). arXiv:1212.1756
  42. 42.
    A. Cabello, Phys. Rev. Lett. 110, 060402 (2013). doi: 10.1103/PhysRevLett.110.060402
  43. 43.
    T. Fritz, A.B. Sainz, R. Augusiak, J. Bohr Brask, R. Chaves, A. Leverrier, A. Acín, Nat. Commun. 4, 2263 (2013). doi: 10.1038/ncomms3263
  44. 44.
    J. Henson (2012). arXiv:1210.5978
  45. 45.
    A. Peres, J. Phys. A 24, 175 (1991). doi: 10.1088/0305-4470/24/4/003 Google Scholar
  46. 46.
    M. Kernaghan, J. Phys. A 27, 829 (1994). doi: 10.1088/0305-4470/27/21/007 Google Scholar
  47. 47.
    A. Cabello, J.M. Estebaranz, G. García-Alcaine, Phys. Lett. A 212, 183 (1996). doi: 10.1016/0375-9601(96)00134-X Google Scholar
  48. 48.
    A. Peres, Phys. Lett. A 151, 107 (1990). doi: 10.1016/0375-9601(90)90172-K Google Scholar
  49. 49.
    N.D. Mermin, Phys. Rev. Lett. 65, 3373 (1990). doi: 10.1103/PhysRevLett.65.3373 Google Scholar
  50. 50.
    S. Givant, P. Halmos, Introduction to Boolean Algebras (Springer, New York, 2009). doi: 10.1103/PhysRevLett.101.210401
  51. 51.
    A. Cabello, Phys. Rev. Lett. 101, 210401 (2008). doi: 10.1103/PhysRevLett.101.210401
  52. 52.
    P. Badziag, I. Bengtsson, A. Cabello, I. Pitowsky, Phys. Rev. Lett. 103 050401 (2009). doi: 10.1103/PhysRevLett.103.050401
  53. 53.
    G. Kirchmair, F. Zähringer, R. Gerritsma, M. Kleinmann, O. Gühne, A. Cabello, R. Blatt, C.F. Roos, Nature (London) 460, 494 (2009). doi: 10.1038/nature08172 Google Scholar
  54. 54.
    E. Amselem, M. Rådmark, M. Bourennane, A. Cabello, Phys. Rev. Lett. 103, 160405 (2009). doi: 10.1103/PhysRevLett.103.160405
  55. 55.
    O. Moussa, C.A. Ryan, D.G. Cory, R. Laflamme, Phys. Rev. Lett. 104, 160501 (2010). doi: 10.1103/PhysRevLett.104.160501
  56. 56.
    S. Yu, C.H. Oh, Phys. Rev. Lett. 108, 030402 (2012). doi: 10.1103/PhysRevLett.108.030402
  57. 57.
    G. Lüders, Ann. Phys. (Leipzig) 8, 322 (1951)Google Scholar
  58. 58.
    G. Lüders (English translation and discussion by K.A. Kirkpatrick), Ann. Phys. 15, 663 (2006). doi: 10.1002/andp.200610207 Google Scholar
  59. 59.
    A. Palacios-Laloy, F. Mallet, F. Nguyen, P. Bertet, D. Vion, D. Esteve, A.N. Korotkov, Nat. Phys. 6, 442 (2010). doi: 10.1038/nphys1641 Google Scholar
  60. 60.
    M.E. Goggin, M.P. Almeida, M. Barbieri, B.P. Lanyon, J.L. OBrien, A.G. White, G.J. Pryde, Proc. Natl. Acad. Sci. USA 108, 1256 (2011). doi: 10.1073/pnas.1005774108 Google Scholar
  61. 61.
    J.-S. Xu, C.-F. Li, X.-B. Zou, G.-C. Guo, Sci. Rep. 1, 101 (2011). doi: 10.1038/srep00101
  62. 62.
    J. Dressel, C.J. Broadbent, J.C. Howell, A.N. Jordan, Phys. Rev. Lett. 106, 040402 (2011). doi: 10.1103/PhysRevLett.106.040402
  63. 63.
    Y. Suzuki, M. Iinuma, H.F. Hofmann, New J. Phys. 14, 103022 (2012). doi: 10.1088/1367-2630/14/10/103022 Google Scholar
  64. 64.
    G. Waldherr, P. Neumann, S.F. Huelga, F. Jelezko, J. Wrachtrup, Phys. Rev. Lett. 107, 090401 (2011). doi: 10.1103/PhysRevLett.107.090401
  65. 65.
    R.E. George, L.M. Robledo, O.J.E. Maroney, M.S. Blok, H. Bernien, M.L. Markham, D.J. Twitchen, J.J.L. Morton, G.A.D. Briggs, R. Hanson, Proc. Natl. Acad. Sci. USA 110, 3777 (2013). doi: 10.1073/pnas.1208374110 Google Scholar
  66. 66.
    V. Athalye, S.S. Roy, T.S. Mahesh, Phys. Rev. Lett. 107, 130402 (2011). doi: 10.1103/PhysRevLett.107.130402
  67. 67.
    A.M. Souza, I.S. Oliveira, R.S. Sarthour, New J. Phys. 13, 053023 (2011). doi: 10.1088/1367-2630/13/5/053023 Google Scholar
  68. 68.
    M.M. Deza, M. Laurent, Geometry of Cuts and Metrics, vol. 15, Algorithms and Combinatorics (Springer, Berlin, 1997)zbMATHGoogle Scholar
  69. 69.
    J.F. Clauser, M.A. Horne, Phys. Rev. D 10, 526 (1974). doi: 10.1103/PhysRevD.10.526 Google Scholar
  70. 70.
  71. 71.
  72. 72.
  73. 73.
    I. Pitowsky, Math. Program. 50, 395 (1991). doi: 10.1007/BF01594946 Google Scholar
  74. 74.
    B.C. Cirel’son, Lett. Math. Phys. 4, 93 (1980)ADSMathSciNetCrossRefGoogle Scholar
  75. 75.
    L.J. Landau, Phys. Lett. A 120, 54 (1987). doi: 10.1016/0375-9601(87)90075-2 Google Scholar
  76. 76.
    S. Wehner, Phys. Rev. A 73, 022110 (2006). doi: 10.1103/PhysRevA.73.022110
  77. 77.
    L. Vandenberghe, S. Boyd, SIAM Rev. 38, 49 (1996). doi: 10.1137/1038003 Google Scholar
  78. 78.
    D. Avis, H. Imai, T. Ito, J. Phys. A: Math. Gen. 39 11283 (2006). doi: 10.1088/0305-4470/39/36/010 Google Scholar
  79. 79.
    M. Navascués, S. Pironio, A. Acín, Phys. Rev. Lett. 98 (2007). doi: 10.1103/PhysRevLett.98.010401
  80. 80.
    M. Navascués, S. Pironio, A. Acín, New J. Phys. 1, 0 (2008). doi: 10.1088/1367-2630/10/7/073013 Google Scholar
  81. 81.
    A Cabello, S Severini, A Winter (2010). arXiv:1010.2163
  82. 82.
    A Cabello, S Severini, A Winter, Phys. Rev. Lett. 112, 040401 (2014). doi: 10.1103/PhysRevLett.112.040401
  83. 83.
    L. Lovász, IEEE Trans. Inf. Theory 25, 1 (1979). doi: 10.1109/TIT.1979.1055985 Google Scholar
  84. 84.
    L. Lovász, Geometric Representations of Graphs (unpublished). www.cs.elte.hu/lovasz/geomrep.pdf
  85. 85.
    S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, New York, 2004)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.University of SiegenSiegenGermany

Personalised recommendations