Skip to main content

Classification of ACM sets of points in \(\mathbb{P}^{1} \times \mathbb{P}^{1}\)

  • Chapter
  • First Online:
Book cover Arithmetically Cohen-Macaulay Sets of Points in P^1 x P^1

Part of the book series: SpringerBriefs in Mathematics ((BRIEFSMATH))

  • 498 Accesses

Abstract

The coordinate ring of a finite sets of points in \(\mathbb{P}^{n}\) is always a Cohen-Macaulay ring. However, the multigraded coordinate ring of a set of points in \(\mathbb{P}^{1} \times \mathbb{P}^{1}\), or more generally, a set of points in \(\mathbb{P}^{n_{1}} \times \cdots \times \mathbb{P}^{n_{r}}\), may fail to have this highly desirable property. This feature is one of the fundamental differences between sets of points in a single projective space and sets of points in a multiprojective space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W. Bruns, J. Herzog, Cohen-Macaulay Rings (Revised Version) (Cambridge University Press, New York, 1998)

    Book  MATH  Google Scholar 

  2. S. Giuffrida, R. Maggioni, A. Ragusa, On the postulation of 0-dimensional subschemes on a smooth quadric. Pac. J. Math. 155(2), 251–282 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. E. Guardo, Schemi di “Fat Points”. PhD Thesis, Università di Messina (2000)

    Google Scholar 

  4. E. Guardo, Fat point schemes on a smooth quadric. J. Pure Appl. Algebra 162(2–3), 183–208 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. E. Guardo, A. Van Tuyl, ACM sets of points in multiprojective space. Collect. Math. 59(2), 191–213 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. E. Guardo, A. Van Tuyl, Classifying ACM sets of points in \(\mathbb{P}^{1} \times \mathbb{P}^{1}\) via separators. Arch. Math. 99(1), 33–36 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. L. Marino, A characterization of ACM 0-dimensional schemes in Q. Matematiche (Catania) 64(2), 41–56 (2009)

    Google Scholar 

  8. J. Migliore, U. Nagel, Liaison and related topics: notes from the Torino workshop-school. Rend. Sem. Mat. Univ. Politec. Torino 59(2), 59–126 (2001)

    MathSciNet  MATH  Google Scholar 

  9. A. Van Tuyl, The Hilbert functions of ACM sets of points in \(\mathbb{P}^{n_{1}} \times \cdots \times \mathbb{P}^{n_{k}}\). J. Algebra 264(2), 420–441 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Authors

About this chapter

Cite this chapter

Guardo, E., Van Tuyl, A. (2015). Classification of ACM sets of points in \(\mathbb{P}^{1} \times \mathbb{P}^{1}\) . In: Arithmetically Cohen-Macaulay Sets of Points in P^1 x P^1. SpringerBriefs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-24166-1_4

Download citation

Publish with us

Policies and ethics