Interoperable Multimedia Annotation and Retrieval for the Tourism Sector

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 544)


The Atlas Metadata System (AMS) employs semantic web annotation techniques in order to create an interoperable information annotation and retrieval platform for the tourism sector. AMS adopts state-of-the-art metadata vocabularies, annotation techniques and semantic web technologies. Interoperability is achieved by reusing several vocabularies and ontologies, including Dublin Core, PROV-O, FOAF, Geonames, Creative commons, SKOS, and CiTO, each of which provides with orthogonal views for annotating different aspects of digital assets. Our system invests a great deal in managing geospatial and temporal metadata, as they are extremely relevant for tourism-related applications. AMS has been implemented as a graph database using Neo4j, and is demonstrated with a dataset of more than 160000 images downloaded from Flickr. The system provides with online recommendations, via queries that exploit social networks, spatiotemporal references, and user rankings. AMS is offered via service-oriented endpoints using public vocabularies to ensure reusability.


Multimedia Content Tourism Sector Graph Database Social Graph Metadata Schema 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Advanced tourism planning system (ATLAS).
  2. 2.
    Dublin Core Metadata Initiative (DCMI) Metadata Terms.
  3. 3.
    FOAF Vocabulary Specification.
  4. 4.
  5. 5.
    Neo4j, the World’s Leading Graph Database.
  6. 6.
    SKOS Simple Knowledge Organization System Reference. W3C Recommendation (2009).
  7. 7.
    PROV-O: The PROV Ontology. W3C Recommendation (2013).
  8. 8.
    Abelson, H., Adida, B., Linksvayer, M., Yergler, N.: CC REL: the creative commons rights expression language. In: de Rosnay, M.D., Martin, J.C.D. (eds.) The Digital Public Domain - Foundations for an Open Culture, pp. 149–187. OpenBook Publishers (2012)Google Scholar
  9. 9.
    Berners-Lee, T., Hendler, J., Lassila, O., et al.: The semantic web. Scientific American 284(5), 28–37 (2001)CrossRefGoogle Scholar
  10. 10.
    Bizer, C., Heath, T., Idehen, K., Berners-Lee, T.: Linked data on the web (LDOW2008). In: Proceedings of the 17th International Conference on World Wide Web, pp. 1265–1266. ACM (2008)Google Scholar
  11. 11.
    Kanellopoulos, D.N., Panagopoulos, A.A.: Exploiting tourism destinations’ knowledge in an RDF-based P2P network. Journal of Network and Computer Applications 31(2), 179–200 (2008)CrossRefGoogle Scholar
  12. 12.
    Kiryakov, A., Popov, B., Terziev, I., Manov, D., Ognyanoff, D.: Semantic annotation, indexing, and retrieval. Web Semantics: Science, Services and Agents on the World Wide Web 2(1), 49–79 (2004)CrossRefGoogle Scholar
  13. 13.
    Klusch, M., Fries, B., Sycara, K.: OWLS-MX: A hybrid semantic web service matchmaker for OWL-S services. Web Semantics: Science, Services and Agents on the World Wide Web 7(2), 121–133 (2009)CrossRefGoogle Scholar
  14. 14.
    Maedche, A., Staab, S.: Applying semantic web technologies for tourism information systems. In: Information and Communication Technologies in Tourism (ENTER 2002). Springer (2002)Google Scholar
  15. 15.
    Pliakos, K., Kotropoulos, C.: PLSA-driven image annotation, classification, and tourism recommendations. In: Proceedings of IEEE International Conference on Image Processing (ICIP), Paris, France, October 2014Google Scholar
  16. 16.
    Robinson, I., Webber, J., Eifrem, E.: Graph Databases. O’Reilly (2013)Google Scholar
  17. 17.
    Ruiz-Martinez, J.M., Minarro-Gimenez, J.A., Castellanos-Nieves, D., Garcia-Sanchez, F., Valencia-Garcia, R.: Ontology population: an application for the e-tourism domain. International Journal of Innovative Computing, Information and Control 7(11), 6115–6134 (2011)Google Scholar
  18. 18.
    Sarvas, R.: User-centric metadata for mobile photos. In: Pervasive Image Capture and Sharing Workshop at Ubicomp 2005. Citeseer (2005)Google Scholar
  19. 19.
    Shotton, D.: CiTO, the citation typing ontology. J. Biomedical Semantics 1(S–1), S6 (2010). CrossRefGoogle Scholar
  20. 20.
    Sycara, K., Paolucci, M., Ankolekar, A., Srinivasan, N.: Automated discovery, interaction and composition of semantic web services. Web Semantics: Science, Services and Agents on the World Wide Web 1(1), 27–46 (2003)CrossRefGoogle Scholar
  21. 21.
    Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison-Wesley (2005)Google Scholar
  22. 22.
    Torniai, C., Battle, S., Cayzer, S.: Sharing, discovering and browsing photo collections through RDF geo-metadata. In: Proceedings of the 3rd Italian Semantic Web Workshop, SWAP 2006. CEUR Workshop Proceedings, vol. 201 (2006)Google Scholar
  23. 23.
    Viana, W., Filho, J.B., Gensel, J., Villanova Oliver, M., Martin, H.: PhotoMap – automatic spatiotemporal annotation for mobile photos. In: Ware, J.M., Taylor, G.E. (eds.) W2GIS 2007. LNCS, vol. 4857, pp. 187–201. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  24. 24.
    White, N.: Movie recommendations with k-nearest neighbors and cosine similarity, Graph Gist winter challenge winners.

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Electrical and Computer Engineering DepartmentDemocritus University of ThraceXanthiGreece

Personalised recommendations