Quantum Acoustics with Surface Acoustic Waves

  • Thomas Aref
  • Per DelsingEmail author
  • Maria K. Ekström
  • Anton Frisk Kockum
  • Martin V. Gustafsson
  • Göran Johansson
  • Peter J. Leek
  • Einar Magnusson
  • Riccardo Manenti
Part of the Quantum Science and Technology book series (QST)


It has recently been demonstrated that surface acoustic waves (SAWs) can interact with superconducting qubits at the quantum level. SAW resonators in the GHz frequency range have also been found to have low loss at temperatures compatible with superconducting quantum circuits. These advances open up new possibilities to use the phonon degree of freedom to carry quantum information. In this chapter, we give a description of the basic SAW components needed to develop quantum circuits, where propagating or localized SAW-phonons are used both to study basic physics and to manipulate quantum information. Using phonons instead of photons offers new possibilities which make these quantum acoustic circuits very interesting. We discuss general considerations for SAW experiments at the quantum level and describe experiments both with SAW resonators and with interaction between SAWs and a qubit. We also discuss several potential future developments.


Surface Acoustic Wave Lithium Tantalate Semiclassical Model Electrical Resonance Electrical Transmission Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Swedish Research Council, the European Research Council, the Knut and Alice Wallenberg Foundation, the UK Engineering and Physical Sciences Research Council. We also acknowledge support from the People Programme (Marie Curie Actions) and the FET-project SCALEQIT of the European Unions Seventh Framework Programme.


  1. 1.
    S. Haroche, J.M. Raimond, Exploring the Quantum (Oxford University Press, Oxford, 2006)CrossRefzbMATHGoogle Scholar
  2. 2.
    R. Miller, T.E. Northup, K.M. Birnbaum, A. Boca, A.D. Boozer, H.J. Kimble, J. Phys. B: At. Mol. Opt. Phys. 38, S551 (2005)Google Scholar
  3. 3.
    A. Wallraff, D.I. Schuster, A. Blais, L. Frunzio, R.S. Huang, J. Majer, S. Kumar, S.M. Girvin, R.J. Schoelkopf, Nature 431(7005), 162 (2004)CrossRefADSGoogle Scholar
  4. 4.
    R. Schoelkopf, S. Girvin, Nature 451(7179), 664 (2008)CrossRefADSGoogle Scholar
  5. 5.
    J. Koch, T.M. Yu, J. Gambetta, A.A. Houck, D.I. Schuster, J. Majer, A. Blais, M.H. Devoret, S.M. Girvin, R.J. Schoelkopf, Phys. Rev. A 76(4), 042319 (2007)CrossRefADSGoogle Scholar
  6. 6.
    H. Zheng, D.J. Gauthier, H.U. Baranger, Phys. Rev. A 82, 063816 (2010)CrossRefADSGoogle Scholar
  7. 7.
    H. Zheng, D.J. Gauthier, H.U. Baranger, Phys. Rev. Lett. 111, 090502 (2013)CrossRefADSGoogle Scholar
  8. 8.
    D. Valente, Y. Li, J.P. Poizat, J.M. Gerard, L.C. Kwek, M.F. Santos, A. Auffeves, New J. Phys. 14, 083029 (2012)Google Scholar
  9. 9.
    I.C. Hoi, C.M. Wilson, G. Johansson, J. Lindkvist, B. Peropadre, T. Palomaki, P. Delsing, New J. Phys. 15, 025011 (2013)CrossRefADSGoogle Scholar
  10. 10.
    J.D. Teufel, T. Donner, M.A. Castellanos-Beltran, J.W. Harlow, K.W. Lehnert, Nat. Nanotechnol. 4(12), 820 (2009)CrossRefADSGoogle Scholar
  11. 11.
    M.D. LaHaye, J. Suh, P.M. Echternach, K.C. Schwab, M.L. Roukes, Nature 459(7249), 960 (2009)CrossRefADSGoogle Scholar
  12. 12.
    A.D. O’Connell, M. Hofheinz, M. Ansmann, R.C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J.M. Martinis, A.N. Cleland, Nature 464(7289), 697 (2010)CrossRefADSGoogle Scholar
  13. 13.
    J.M. Pirkkalainen, S.U. Cho, J. Li, G.S. Paraoanu, P.J. Hakonen, M.A. Sillanpää, Nature 494(7436), 211 (2013)CrossRefADSGoogle Scholar
  14. 14.
    S. Datta, Surface Acoustic Wave Devices (Prentice-Hall, Englewood Cliffs, 1986)Google Scholar
  15. 15.
    D. Morgan, Surface Acoustic Wave Filters, 2nd edn. (Academic Press, Waltham, 2007)Google Scholar
  16. 16.
    C. Campbell, Surface Acoustic Wave Devices for Mobile and Wireless Communications (Academic Press, New York, 1998)Google Scholar
  17. 17.
    C. Barnes, J. Shilton, A. Robinson, Phys. Rev. B 62(12), 8410 (2000)CrossRefADSGoogle Scholar
  18. 18.
    S. Hermelin, S. Takada, M. Yamamoto, S. Tarucha, A.D. Wieck, L. Saminadayar, C. Bäuerle, T. Meunier, Nature 477(7365), 435 (2011)CrossRefADSGoogle Scholar
  19. 19.
    R.P.G. McNeil, M. Kataoka, C.J.B. Ford, C.H.W. Barnes, D. Anderson, G.A.C. Jones, I. Farrer, D.A. Ritchie, Nature 477(7365), 439 (2011)CrossRefADSGoogle Scholar
  20. 20.
    E.B. Magnusson, B.H. Williams, R. Manenti, M.S. Nam, A. Nersisyan, M.J. Peterer, A. Ardavan, P.J. Leek, Appl. Phys. Lett. 106, 063509 (2015)CrossRefADSGoogle Scholar
  21. 21.
    M.V. Gustafsson, T. Aref, A.F. Kockum, M.K. Ekström, G. Johansson, P. Delsing, Science 346(6206), 207 (2014)CrossRefADSGoogle Scholar
  22. 22.
    J.W. Strutt, Lord Rayleigh, Proc. Lond. Math. Soc. 17, 4 (1885)Google Scholar
  23. 23.
    J. Pedros, L. Garcia-Gancedo, C. Ford, C. Barnes, J. Griffiths, G. Jones, A. Flewitt, J. Appl. Phys. 110, 103501 (2011)CrossRefADSGoogle Scholar
  24. 24.
    O. Madelung, U. Rössler, M. Schulz (eds.), II–VI and I–VII compounds; semimagnetic compounds, Landolt-Börnstein—Group III Condensed Matter (Springer, Berlin, 1999)Google Scholar
  25. 25.
    A.J. Slobodnik, in Acoustic Surface Waves, ed. by A.A. Oliner (Springer, Heidelberg, 1978), p. 225Google Scholar
  26. 26.
    J.S. Browder, S.S. Ballard, Appl. Opt. 16, 3214 (1977)CrossRefADSGoogle Scholar
  27. 27.
    T.F. Smith, G. White, J. Phys. C: Solid State Phys. 8, 2031 (1975)CrossRefADSGoogle Scholar
  28. 28.
    K. Hashimoto, Surface Acoustic Wave Devices in Telecommunications: Modelling and Simulation (Springer, Heidelberg, 2000)CrossRefGoogle Scholar
  29. 29.
    B. Yates, R.F. Cooper, M.M. Kreitman, Phys. Rev. B 4, 1314 (1971)CrossRefADSGoogle Scholar
  30. 30.
    G.K. White, P.J. Meeson, Experimental Techniques in Low-Temperature Physics, 4th edn. (Clarendon Press, Oxford, 2002)Google Scholar
  31. 31.
    W.D. Hunt, R.L. Miller, B.J. Hunsinger, J. Appl. Phys. 60, 3532 (1986)CrossRefADSGoogle Scholar
  32. 32.
    W.D. Hunt, Y. Kim, F.M. Fliegel, J. Appl. Phys. 69(4), 1936 (1991)CrossRefADSGoogle Scholar
  33. 33.
    J.M.M. de Lima, F. Alsina, W. Seidel, P.V. Santos, J. Appl. Phys. 94, 7848 (2003)CrossRefADSGoogle Scholar
  34. 34.
    A. Weber, G. Weiss, S. Hunklinger, in IEEE 1991 Ultrasonics Symposium (IEEE, 1991), pp. 363–366Google Scholar
  35. 35.
    D. Leibfried, R. Blatt, C. Monroe, D. Wineland, Rev. Mod. Phys. 75, 281 (2003)CrossRefADSGoogle Scholar
  36. 36.
    S. Haroche, Rev. Mod. Phys. 85, 1083 (2013)CrossRefADSGoogle Scholar
  37. 37.
    H. Walther, B.T.H. Varcoe, B.G. Englert, T. Becker, Rep. Prog. Phys. 69, 1325 (2006)CrossRefADSGoogle Scholar
  38. 38.
    G. Kirchmair, B. Vlastakis, Z. Leghtas, S. Nigg, H. Paik, E. Ginossar, M. Mirrahimi, L. Frunzio, S. Girvin, R. Schoelkopf, Nature 495, 205 (2013)CrossRefADSGoogle Scholar
  39. 39.
    R. Barends, J. Kelly, A. Megrant, D. Sank, E. Jeffrey, Y. Chen, Y. Yin, B. Chiaro, J. Mutus, C. Neill, P. O’Malley, P. Roushan, J. Wenner, T.C. White, A.N. Cleland, J.M. Martinis, Phys. Rev. Lett. 111, 080502 (2013)CrossRefADSGoogle Scholar
  40. 40.
    A.F. Kockum, P. Delsing, G. Johansson, Phys. Rev. A 90, 013837 (2014)CrossRefADSGoogle Scholar
  41. 41.
    H.J. Carmichael, Statistical Methods in Quantum Optics 1 (Springer, Berlin, 1999)CrossRefzbMATHGoogle Scholar
  42. 42.
    C.W. Gardiner, P. Zoller, Quantum Noise, 3rd edn. (Springer, Berlin, 2004)zbMATHGoogle Scholar
  43. 43.
    G. Lindblad, Commun. Math. Phys. 48, 119 (1976)CrossRefADSMathSciNetzbMATHGoogle Scholar
  44. 44.
    W.E. Lamb, R.C. Retherford, Phys. Rev. 72, 241 (1947)CrossRefADSGoogle Scholar
  45. 45.
    H.A. Bethe, Phys. Rev. 72, 339 (1947)CrossRefADSzbMATHGoogle Scholar
  46. 46.
    E. Ash, in G-MTT 1970 International Microwave Symposium, vol. 70 (IEEE, 1970), pp. 385–386Google Scholar
  47. 47.
    D.L.T. Bell Jr., R.C.M. Li, Proc. IEEE 64(5), 711 (1976)CrossRefGoogle Scholar
  48. 48.
    T. Bristol, W. Jones, P. Snow, W. Smith, in 1972 Ultrasonics Symposium (IEEE, 1972), pp. 343–345Google Scholar
  49. 49.
    M. Sandberg, C.M. Wilson, F. Persson, T. Bauch, G. Johansson, V. Shumeiko, T. Duty, P. Delsing, Appl. Phys. Lett. 92, 203501 (2008)CrossRefADSGoogle Scholar
  50. 50.
    M. Pierre, I.M. Svensson, S.R. Sathyamoorthy, G. Johansson, P. Delsing, Appl. Phys. Lett. 104(23), 232604 (2014)Google Scholar
  51. 51.
    R.W. Boyd, Nonlinear Optics, 3rd edn. (Academic Press, Orlando, 2008)Google Scholar
  52. 52.
    T. Niemczyk, F. Deppe, H. Huebl, E.P. Menzel, F. Hocke, M.J. Schwarz, J.J. Garcia-Ripoll, D. Zueco, T. Hummer, E. Solano, A. Marx, R. Gross, Nat. Phys. 6, 772 (2010)CrossRefGoogle Scholar
  53. 53.
    D. Ballester, G. Romero, J.J. Garcia-Ripoll, F. Deppe, E. Solano, Phys. Rev. X 2(2), 021007 (2012)Google Scholar
  54. 54.
    M. Büttiker, Phys. Rev. B (Condensed Matter) 36(7), 3548 (1987)Google Scholar
  55. 55.
    V. Bouchiat, D. Vion, P. Joyez, D. Esteve, M.H. Devoret, Phys. Scr. T 76, 165 (1998)CrossRefADSGoogle Scholar
  56. 56.
    F. Yan, S. Gustavsson, A. Kamal, J. Birenbaum, A.P. Sears, D. Hover, T.J.Gudmundsen, J.L. Yoder, T.P. Orlando, J. Clarke, A.J. Kerman, W.D. Oliver The Flux Qubit Revisited (2015). arXiv:1508.06299
  57. 57.
    M. Göppl, A. Fragner, M. Baur, R. Bianchetti, S. Filipp, J.M. Fink, P.J. Leek, G. Puebla, L. Steffen, A. Wallraff, J. Appl. Phys. 104(11), 113904 (2008)CrossRefADSGoogle Scholar
  58. 58.
    M. Aspelmeyer, T.J. Kippenberg, in Cavity Optomechanics, ed. by M. Aspelmeyer, T.J. Kippenberg, F. Marquardt (Springer, Berlin, 2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Thomas Aref
    • 1
  • Per Delsing
    • 1
    Email author
  • Maria K. Ekström
    • 1
  • Anton Frisk Kockum
    • 1
    • 2
  • Martin V. Gustafsson
    • 1
    • 3
  • Göran Johansson
    • 1
  • Peter J. Leek
    • 4
  • Einar Magnusson
    • 4
  • Riccardo Manenti
    • 4
  1. 1.Microtechnology and NanoscienceChalmers University of TechnologyGöteborgSweden
  2. 2.Center for Emergent Matter ScienceRIKENWako, SaitamaJapan
  3. 3.Department of ChemistryColumbia UniversityNew YorkUSA
  4. 4.Clarendon Laboratory, Department of PhysicsUniversity of OxfordOxfordUK

Personalised recommendations