Advertisement

Quantum Information Networks with Superconducting Nanowire Single-Photon Detectors

  • Shigehito MikiEmail author
  • Mikio Fujiwara
  • Rui-Bo Jin
  • Takashi Yamamoto
  • Masahide Sasaki
Chapter
Part of the Quantum Science and Technology book series (QST)

Abstract

The advent of high performance practical superconducting nanowire single photon detectors (SNSPDs) has enabled rapid progress in a range of quantum information technologies, including quantum key distribution, characterization of single photon sources and quantum interface technologies. This chapter gives an overview of these recent advances.

Keywords

Wavelength Conversion Difference Frequency Generation Telecom Wavelength Quantum Interface PPKTP Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, R. Sobolewski, Picosecond superconducting single-photon optical detector. Appl. Phys. Lett. 79, 705–707 (2001)Google Scholar
  2. 2.
    C.M. Natarajan, M.G. Tanner, R.H. Hadfield, Superconducting nanowire single-photon detectors: physics and applications. Supercond. Sci. Technol. 25, 063001 (2012)CrossRefADSGoogle Scholar
  3. 3.
    S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, Z. Wang, Multichannel SNSPD system with high detection efficiency at telecommunication wavelength. Opt. Lett. 35, 2133–2135 (2010)CrossRefADSGoogle Scholar
  4. 4.
    R.H. Hadfield, M.J. Stevens, S.S. Gruber, A.J. Miller, R.E. Schwall, R.P. Mirin, S.W. Nam, Single photon source characterization with a superconducting single photon detector. Opt. Express 13, 10846–10853 (2005)CrossRefADSGoogle Scholar
  5. 5.
    S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, Development of SNSPD System with Gifford-McMahon Cryocooler. IEEE Trans. Appl. Supercond. 19, 332–335 (2009)CrossRefADSGoogle Scholar
  6. 6.
    R.H. Hadfield, J.L. Habif, J. Schlafer, R.E. Schwall, S.W. Nam, Quantum key distribution at 1550 nm with twin superconducting single-photon detectors. Appl. Phys. Lett. 89, 241129 (2006)CrossRefADSGoogle Scholar
  7. 7.
    R.J. Collins, R.H. Hadfield, V. Fernandez, S.W. Nam, G.S. Buller, Low timing jitter detector for gigahertz quantum key distribution. Electron. Lett. 43, 180–182 (2007)CrossRefGoogle Scholar
  8. 8.
    H. Takesue, S.W. Nam, Q. Zhang, R.H. Hadfield, T. Honjo, K. Tamaki, Y. Yamamoto, Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors. Nat. Photon. 1, 343–348 (2007)Google Scholar
  9. 9.
    D. Stucki, N. Walenta, F. Vannel, R.T. Thew, N. Gisin, H. Zbinden, S. Gray, C.R. Towery, S. Ten, High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres. New J. Phys. 11, 075003 (2009)CrossRefADSGoogle Scholar
  10. 10.
    A. Tanaka, M. Fujiwara, S.W. Nam, Y. Nambu, S. Takahashi, W. Maeda, K. Yoshino, S. Miki, B. Baek, Z. Wang, A. Tajima, M. Sasaki, A. Tomita, Ultra fast quantum key distribution over a 97 km installed telecom fiber with wavelength division multiplexing clock synchronization. Opt. Express 16, 11354–11360 (2008)CrossRefADSGoogle Scholar
  11. 11.
    T. Honjo, S.W. Nam, H. Takesue, Q. Zhang, H. Kamada1, Y. Nishida, O. Tadanaga, M. Asobe, B. Baek, R. Hadfield, S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, K. Inoue, Y. Yamamoto, Long-distance entanglement-based quantum key distribution over optical fiber. Opt. Express 16, 19118–19126 (2008)Google Scholar
  12. 12.
    C.M. Natarajan, A. Peruzzo, S. Miki, M. Sasaki, Z. Wang, B. Baek, S. Nam, R.H. Hadfield, J.L. O’Brien, Operating quantum waveguide circuits with superconducting single-photon detectors. Appl. Phys. Lett. 96, 211101 (2010)CrossRefADSGoogle Scholar
  13. 13.
    M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sasaki, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J.F. Dynes, A.R. Dixon, A.W. Sharpe, Z.L. Yuan, A.J. Shields, S. Uchikoga, M. Legre, S. Robyr, P. Trinkler, L. Monat, J.-B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Langer, M. Peev, A. Zeilinger, Field test of quantum key distribution in the Tokyo QKD Network. Opt. Express 19, 10387–10409 (2011)CrossRefADSGoogle Scholar
  14. 14.
    K. Yoshino, M. Fujiwara, A. Tanaka, S. Takahashi, Y. Nambu, A. Tomita, S. Miki, T. Yamashita, Z. Wang, M. Sasaki, A. Tajima, High-speed wavelength-division multiplexing quantum key distribution system. Opt. Lett. 37, 223–225 (2012)CrossRefADSGoogle Scholar
  15. 15.
    A. Tanaka, M. Fujiwara, K. Yoshino, S. Takahashi, Y. Nambu, A. Tomita, S. Miki, T. Yamashita, Z. Wang, M. Sasaki, A. Tajima, High-speed quantum key distribution system for 1-Mbps real-time key generation. IEEE J. Quantum Electron. 48, 542–550 (2012)Google Scholar
  16. 16.
    R. Ikuta, H. Kato, Y. Kusaka, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, N. Imoto, High-fidelity conversion of photonic quantum information to telecommunication wavelength with superconducting single-photon detectors. Phys. Rev. A 87, 010301(R) (2013)CrossRefADSGoogle Scholar
  17. 17.
    R. Ikuta, T. Kobayashi, H. Kato, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, N. Imoto, Nonclassical two-photon interference between independent telecommunication light pulses converted by difference-frequency generation. Phys. Rev. A 88, 042317 (2013)CrossRefADSGoogle Scholar
  18. 18.
    R. Ikuta, T. Kobayashi, H. Kato, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, N. Imoto, Observation of two output light pulses from a partial wavelength converter preserving phase of an input light at a single-photon level. Opt. Express 21, 27865 (2013)CrossRefADSGoogle Scholar
  19. 19.
    M. Fujiwara, S. Miki, T. Yamashita, Z. Wang, M. Sasaki, Photon level crosstalk between parallel fibers installed in urban area. Opt. Express 18, 22199–22207 (2010)Google Scholar
  20. 20.
    R.B. Jin, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Wang, K. Wakui, R. Shimizu, M. Sasaki, Efficient detection of a highly bright photon source using superconducting nanowire single photon detectors. Opt. Commun. 336, 47 (2015)CrossRefADSGoogle Scholar
  21. 21.
    R.B. Jin, R. Shimizu, K. Wakui, H. Benichi, M. Sasaki, Widely tunable single photon source with high purity at telecom wavelength. Opt. Express 21, 10659–10666 (2013)Google Scholar
  22. 22.
    R.B. Jin, R. Shimizu, K. Wakui, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Wang, M. Sasaki, Pulsed Sagnac polarization-entangled photon source with a PPKTP crystal at telecom wavelength. Opt. Express 22(10), 11498–11507 (2014)CrossRefADSGoogle Scholar
  23. 23.
    R.B. Jin, K. Wakui, R. Shimizu, H. Benichi, S. Miki, T. Yamashita, H. Terai, Z. Wang, M. Fujiwara, M. Sasaki, Nonclassical interference between independent intrinsically pure single photons at telecommunication wavelength. Phys. Rev. A 87, 063801 (2013)Google Scholar
  24. 24.
    R. Ikuta, T. Kobayashi, S. Yasui, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, N. Imoto, Frequency down-conversion of 637 nm light to the telecommunication band for non-classical light emitted from NV centers in diamond. Opt. Express 22, 11205 (2014)CrossRefADSGoogle Scholar
  25. 25.
    X. Hu, T. Zhong, J.E. White, E.A. Dauler, F. Najafi, C.H. Herder, F.N.C. Wong, K. Berggren, Fiber-coupled nanowire photon counter at 1550 nm with 24 % system detection efficiency. Opt. Lett. 34, 3607–3609 (2009)CrossRefADSGoogle Scholar
  26. 26.
    F. Marsili, V.B. Verma, J.A. Stern, S. Harrington, A.E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M.D. Shaw, R.P. Mirin, S.W. Nam, Detecting single infrared photons with 93 % system efficiency. Nat. Photon. 7, 210–214 (2013)Google Scholar
  27. 27.
    D. Rosenberg, A.J. Kerman, R.J. Molnar, E.A. Dauler, High-speed and high-efficiency superconducting nanowire single photon detector array. Opt. Express 21, 1440–1447 (2013)CrossRefADSGoogle Scholar
  28. 28.
    S. Miki, T. Yamashita, H. Terai, Z. Wang, High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler. Opt. Express 21, 10208 (2013)Google Scholar
  29. 29.
    E.A. Dauler, M.E. Grein, A.J. Kerman, F. Marsili, S. Miki, S.W. Nam, M.D. Shaw, H. Terai, V.B. Verma, T. Yamashita, Review of superconducting nanowire single-photon detector system design options and demonstrated performance. Opt. Eng. 53, 081907 (2014)Google Scholar
  30. 30.
    N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)Google Scholar
  31. 31.
    G.S. Vernam, Secret signaling system, U.S. Patent 1 310 719, Jul 1919Google Scholar
  32. 32.
  33. 33.
  34. 34.
    QuintessenceLabs Pty Ltd. http://www.quintessencelabs.com/
  35. 35.
    C. Elliott, A. Colvin, D. Pearson, O. Pikalo, J. Schlafer, H. Yeh, Current status of the DARPA quantum network, in Quantum Information and Computation III, Proceedings of SPIE, ed. by E.J. Donkor, A.R. Pirich, H.E. Brandt, vol. 5815, pp. 138-149 (2005). arXiv:quant-ph/0503058v2
  36. 36.
    M. Peev, C. Pacher, R. Alléaume, C. Barreiro, J. Bouda, W. Boxleitner, T. Debuisschert, E. Diamanti, M. Dianati, J.F. Dynes, S. Fasel, S. Fossier, M. Fürst, J.-D. Gautier, O. Gay, N. Gisin, P. Grangier, A. Happe, Y. Hasani, M. Hentschel, H. Hübel, G. Humer, T. Länger, M. Legré, R. Lieger, J. Lodewyck, T. Lorünser, N. Lütkenhaus, A. Marhold, T. Matyus, O. Maurhart, L. Monat, S. Nauerth, J.-B. Page, A. Poppe, E. Querasser, G. Ribordy, S. Robyr, L. Salvail, A.W. Sharpe, A.J. Shields, D. Stucki, M. Suda, C. Tamas, T. Themel, R.T. Thew, Y. Thoma, A. Treiber, P. Trinkler, R. Tualle-Brouri, F. Vannel, N. Walenta, H. Weier, H. Weinfurter, I. Wimberger, Z.L. Yuan, H. Zbinden, A. Zeilinger, The SECOQC quantum key distribution network in Vienna. New J. Phys. 11, 075001 (2009)Google Scholar
  37. 37.
    T. Länger, G. Lenhart, Standardization of quantum key distribution and the ETSI standardization initiative ISG-QKD. New J. Phys. 11, 055051 (2009)Google Scholar
  38. 38.
  39. 39.
    A. Mirza, F. Petruccione, Realizing long-term quantum cryptography. J. Opt. Soc. Am. B 27, A185–A188 (2010)Google Scholar
  40. 40.
    Z.L. Yuan, A.J. Shields, Continuous operation of a one-way quantum key distribution system over installed telecom fibre. Opt. Express 13, 660–665 (2005)Google Scholar
  41. 41.
    T.E. Chapuran, P. Toliver, N.A. Peters, J. Jackel, M.S. Goodman, R.J. Runser, S.R. McNown, N. Dallmann, R.J. Hughes, K.P. McCabe, J.E. Nordholt, C.G. Peterson, K.T. Tyagi, L. Mercer, H. Dardy, Optical networking for quantum key distribution and quantum communications. New J. Phys. 11, 105001 (2009)Google Scholar
  42. 42.
    D. Lancho, J. Martinez-Mateo, D. Elkouss, M. Soto, V. Martin, QKD in standard optical telecommunications networks, Quantum Communication and Quantum Networking, vol. 36, Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (Springer, Heidelberg, 2010), pp. 142–149CrossRefGoogle Scholar
  43. 43.
    S. Wang, W. Chen, Z.-Q. Yin, Y. Zhang, T. Zhang, H.-W. Li, F.-X. Xu, Z. Zhou, Y. Yang, D.-J. Huang, L.-J. Zhang, F.-Y. Li, D. Liu, Y.-G. Wang, G.-C. Guo, Z.-F. Han, Field test of wavelength-saving quantum key distribution network. Opt. Lett. 35(14), 2454–2456 (2010)CrossRefADSGoogle Scholar
  44. 44.
    T.-Y. Chen, J. Wang, H. Liang, W.-Y. Liu, Y. Liu, X. Jiang, Y. Wang, X. Wan, W.-Q. Cai, L. Ju, L.-K. Chen, L.-J. Wang, Y. Gao, K. Chen, C.-Z. Peng, Z.-B. Chen, J.-W. Pan, Metropolitan all-pass and inter-city quantum communication network. Opt. Express 18, 27217–27225 (2010)Google Scholar
  45. 45.
    W.-Y. Hwang, Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)CrossRefADSGoogle Scholar
  46. 46.
    H.-K. Lo, X. Ma, K. Chen, Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)CrossRefADSGoogle Scholar
  47. 47.
    X.-B. Wang, Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)CrossRefADSGoogle Scholar
  48. 48.
    K. Inoue, E. Waks, Y. Yamamoto, Differential-phase-shift quantum key distribution using coherent light. Phys. Rev. A 68, 022317 (2003)Google Scholar
  49. 49.
    S. Obana, A. Tanaka, General purpose hash function family computer and shared key creating system. Patent WO/2007/034685 (29 March 2007)Google Scholar
  50. 50.
    X. Ma, B. Qi, Y. Zhao, H.-K. Lo, Practical decoy state for quantum key distribution. Phys. Rev. A. 72, 012326 (2005)CrossRefADSGoogle Scholar
  51. 51.
    Y. Zhao, B. Qi, X. Ma, H.-K. Lo, L. Qian, Experimental quantum key distribution with decoy states. Phys. Rev. Lett. 96, 230503 (2006)Google Scholar
  52. 52.
    E. Waks, H. Takesue, Y. Yamamoto, Security of differential-phase-shift quantum key distribution against individual attacks. Phys. Rev. A 73, 012344 (2006)Google Scholar
  53. 53.
    T. Honjo, A. Uchida, K. Amano, K. Hirano, H. Someya, H. Okumura, K. Yoshimura, P. Davis, Y. Tokura, Differential-phase-shift quantum key distribution experiment using fast physical random bit generator with chaotic semiconductor lasers. Opt. Express 17, 9053–9061 (2009)Google Scholar
  54. 54.
    The Third International Conference on Updating Quantum Cryptography and Communications (UQCC2010). http://www.uqcc2010.org/
  55. 55.
    The “Tokyo QKD Network video” of the network operation demonstrated during the UQCC2010 conference is available at http://www.uqcc2010.org/
  56. 56.
  57. 57.
  58. 58.
    D.C. Chang, E.F. Kuester, Radiation and propagation of a surface-wave mode on a curved open waveguide of arbitrary cross section. Radio Sci. 11, 449–457 (1976)CrossRefADSGoogle Scholar
  59. 59.
    A.R. Dixon, Z.L. Yuan, J.F. Dynes, A.W. Sharpe, A.J. Shields, Continuous operation of high bit rate quantum key distribution. Appl. Phys. Lett. 96, 161102 (2010)Google Scholar
  60. 60.
    P.G. Evans, R.S. Bennink, W.P. Grice, T.S. Humble, J. Schaake, Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission. Phys. Rev. Lett. 105, 253–601 (2010)Google Scholar
  61. 61.
    Y.F. Huang, B.H. Liu, L. Peng, Y.H. Li, L. Li, C.F. Li, G.C. Guo, Experimental generation of an eight-photon Greenberger-Horne-Zeilinger state, Nat. Commun. 2 546(1–6) (2011)Google Scholar
  62. 62.
    F. König, F.N.C. Wong, Extended phase matching of second-harmonic generation in periodically poled \({\rm KTiOPO}_{4}\) with zero group-velocity mismatch. Appl. Phys. Lett. 84, 1644 (2004)Google Scholar
  63. 63.
    S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, NbN superconducting single-photon detectors prepared on single-crystal MgO substrates. IEEE Trans. Appl. Superconduct. 17, 285–288 (2007)Google Scholar
  64. 64.
    X.C. Yao, T.X. Wang, P. Xu, H. Lu, G.S. Pan, X.H. Bao, C.Z. Peng, C.Y. Lu, Y.A. Chen, J.W. Pan, Observation of eight-photon entanglement. Nat. Photon. 6, 225–228 (2012)Google Scholar
  65. 65.
    J. Yin, J.G. Ren, H. Lu, Y. Cao, H.L. Yong, T.P. Wu, C. Liu, S.K. Liao, F. Zhou, Y. Jiang, X.D. Cai, P. Xu, G.S. Pan, J.J. Jia, Y.M. Huang, H. Yin, J.Y. Wang, Y.A. Chen, C.Z. Peng, J.W. Pan, Quantum teleportation and entanglement distribution over 100-kilometre freespace channels. Nature 488, 185–188 (2012)Google Scholar
  66. 66.
    H.-J. Briegel, W. Dür, J.I. Cirac, P. Zoller, Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998)CrossRefADSGoogle Scholar
  67. 67.
    L.-M. Duan, M.D. Lukin, J.I. Cirac, P. Zoller, Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001)CrossRefADSGoogle Scholar
  68. 68.
    N. Gisin, R. Thew, Quantum communication. Nat. Photonics 1, 165–171 (2007)CrossRefADSGoogle Scholar
  69. 69.
    J. Hofmann, M. Krug, N. Ortegel, L. Gérard, M. Weber, W. Rosenfeld, H. Weinfurter, Heralded entanglement between widely separated atoms. Science 337, 72 (2012)CrossRefADSGoogle Scholar
  70. 70.
    S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, G. Rempe, An elementary quantum network of single atoms in optical cavities. Nature 484, 195–200 (2012)CrossRefADSGoogle Scholar
  71. 71.
    P. Kumar, Quantum frequency conversion. Opt. Lett. 15, 1476–1478 (1990)CrossRefADSGoogle Scholar
  72. 72.
    S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, H. Zbinden, A photonic quantum information interface. Nature 437, 116–120 (2005)CrossRefADSGoogle Scholar
  73. 73.
    C. Langrock, E. Diamanti, R.V. Roussev, Y. Yamamoto, M.M. Fejer, H. Takesue, Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides. Opt. Lett. 30, 1725–1727 (2005)Google Scholar
  74. 74.
    A.G. Radnaev, Y.O. Dudin, R. Zhao, H.H. Jen, S.D. Jenkins, A. Kuzmich, T.A.B. Kennedy, A quantum memory with telecom-wavelength conversion. Nat. Phys. 6, 894–899 (2010)CrossRefGoogle Scholar
  75. 75.
    R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, N. Imoto, Wide-band quantum interface for visible-to-telecommunication wavelength conversion. Nat. Commun. 2, 537 (2011)CrossRefADSGoogle Scholar
  76. 76.
    T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F.-L. Hong, T.W. Hänsch, Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbo3 ridge waveguide. Opt. Express 17, 17792–17800 (2009)CrossRefADSGoogle Scholar
  77. 77.
    S. Zaske, A. Lenhard, C.A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, C. Becher, Visible-to-telecom quantum frequency conversion of light from a single quantum emitter. Phys. Rev. Lett. 109, 147404 (2012)CrossRefADSGoogle Scholar
  78. 78.
    S. Ates, I. Agha, A. Gulinatti, I. Rech, M.T. Rakher, A. Badolato, K. Srinivasan, Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot. Phys. Rev. Lett. 109, 147405 (2012)CrossRefADSGoogle Scholar
  79. 79.
    J.S. Pelc, L. Yu, K. De Greve, P.L. McMahon, C.M. Natarajan, V. Esfandyarpour, S. Maier, C. Schneider, M. Kamp, S. Höfling, R.H. Hadfield, A. Forchel, Y. Yamamoto, M.M. Fejer, Downconversion quantum interface for a single quantum dot spin and 1550-nm single-photon channel. Opt. Express 20, 27510–27519 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Shigehito Miki
    • 1
    Email author
  • Mikio Fujiwara
    • 2
  • Rui-Bo Jin
    • 3
  • Takashi Yamamoto
    • 4
  • Masahide Sasaki
    • 2
  1. 1.Advanced ICT Research InstituteNational Institute of Information and Communications TechnologyNishi-ku, KobeJapan
  2. 2.National Institute of Information and Communication TechnologyKoganeiJapan
  3. 3.Advanced ICT Research InstituteNational Institute of Information and Communication TechnologyKoganeiJapan
  4. 4.Graduate School of Engineering ScienceOsaka UniversityToyonakaJapan

Personalised recommendations