Skip to main content

Waveguide Superconducting Single- and Few-Photon Detectors on GaAs for Integrated Quantum Photonics

  • Chapter
  • First Online:
Superconducting Devices in Quantum Optics

Part of the book series: Quantum Science and Technology ((QST))

Abstract

Integrated quantum photonics offers three principal advantages over bulk optics—low loss, simplicity and scalability. Quantum photonic integrated circuits show promise for on-chip generation, manipulation and detection of tens of single photons for quantum information processing. For quantum photonic integration, gallium arsenide is one of the most promising material platforms as full integration of all active and passive circuit elements can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. X.-C. Yao, T.-X. Wang, P. Xu, H. Lu, G.-S. Pan, X.-H. Bao et al., Observation of eight-photon entanglement. Nat. Photon. 6, 225–228 (2012)

    Google Scholar 

  2. J.L. O’Brien, A. Furusawa, J. Vučković, Photonic quantum technologies. Nat. Photonics 3, 687–695 (2009)

    Article  ADS  Google Scholar 

  3. G.N. Gol’tsman et al., O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov et al., Picosecond superconducting single-photon optical detector. Appl. Phys. Lett. 79, 705-707 (2001)

    Google Scholar 

  4. N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, Quantum cryptography. Rev. Mod. Phys. 74, 96–145 (2002)

    Article  Google Scholar 

  5. J.L. O’Brien, G.J. Pryde, A.G. White, T.C. Ralph, D. Branning, Demonstration of an all-optical quantum controlled-NOT gate. Nature 426, 264–267 (2003)

    Article  ADS  Google Scholar 

  6. E. Knill, R. Laflamme, G.J. Milburn, A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)

    Article  ADS  Google Scholar 

  7. R. Raussendorf, H.J. Briegel, A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001)

    Article  ADS  Google Scholar 

  8. A. Aspuru-Guzik, P. Walther, Photonic quantum simulators. Nat. Phys. 8, 285–291 (2012)

    Google Scholar 

  9. A. Politi, M.J. Cryan, J.G. Rarity, S.Y. Yu, J.L. O’Brien, Silica-on-silicon waveguide quantum circuits. Science 320, 646–649 (2008)

    Article  ADS  Google Scholar 

  10. P.J. Shadbolt, M.R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino et al., Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit. Nat. Photon. 6, 45–49 (2012)

    Google Scholar 

  11. A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino et al., Integrated photonic quantum gates for polarization qubits. Nat. Commun. 2, 566 (2011)

    Google Scholar 

  12. A. Peruzzo, M. Lobino, J.C.F. Matthews, N. Matsuda, A. Politi, K. Poulios et al., Quantum walks of correlated photons. Science 329, 1500–1503 (2010)

    Article  ADS  Google Scholar 

  13. S. Aaronson, A. Arkhipov, The computational complexity of linear optics, in Stoc 11: Proceedings of the 43rd ACM Symposium on Theory of Computing, pp. 333-342 (2011)

    Google Scholar 

  14. A. Crespi, R. Osellame, R. Ramponi, D.J. Brod, E.F. Galvao, N. Spagnolo et al., Integrated multimode interferometers with arbitrary designs for photonic boson sampling. Nat. Photon. 7, 545–549 (2013)

    Google Scholar 

  15. J.B. Spring, B.J. Metcalf, P.C. Humphreys, W.S. Kolthammer, X.M. Jin, M. Barbieri et al., Boson sampling on a photonic chip. Science 339, 798–801 (2013)

    Article  ADS  Google Scholar 

  16. M. Tillmann, B. Dakic, R. Heilmann, S. Nolte, A. Szameit, P. Walther, Experimental boson sampling. Nat. Photon. 7, 540–544 (2013)

    Google Scholar 

  17. A.J. Shields, Semiconductor quantum light sources. Nat. Photon 1, 215–223 (2007)

    Google Scholar 

  18. A. Martin, O. Alibart, M.P.D. Micheli, D.B. Ostrowsky, S. Tanzilli, A quantum relay chip based on telecommunication integrated optics technology. New J. Phys. 14, 025002 (2012)

    Article  ADS  Google Scholar 

  19. N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W.J. Munro, K. Shimizu et al., A monolithically integrated polarization entangled photon pair source on a silicon chip. Sci. Rep. 2 (2012)

    Google Scholar 

  20. J.W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka et al., On-chip quantum interference between silicon photon-pair sources. Nat. Photon. 8, 104–108 (2014)

    Google Scholar 

  21. T. Gerrits, N. Thomas-Peter, J.C. Gates, A.E. Lita, B.J. Metcalf, B. Calkins et al., On-chip, photon-number-resolving, telecommunication-band detectors for scalable photonic information processing. Phys. Rev. A 84, 060301 (2011)

    Article  ADS  Google Scholar 

  22. J.P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli et al., Waveguide superconducting single-photon detectors for integrated quantum photonic circuits. Appl. Phys. Lett. 99, 181110 (2011)

    Google Scholar 

  23. W.H.P. Pernice, C. Schuck, O. Minaeva, M. Li, G.N. Goltsman, A.V. Sergienko et al., High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nat. Commun. 3, 1325 (2012)

    Google Scholar 

  24. O. Benson, C. Santori, M. Pelton, Y. Yamamoto, Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 84, 2513–2516 (2000)

    Article  ADS  Google Scholar 

  25. S. Buckley, K. Rivoire, J. Vuckovic, Engineered quantum dot single-photon sources. Rep. Prog. Phys. 75, 126503 (2012)

    Google Scholar 

  26. P. Lodahl, S. Mahmoodian, S. Stobbe, Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347 (2015)

    Google Scholar 

  27. M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu et al., Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Phys. Rev. Lett. 113, 093603 (2014)

    Article  ADS  Google Scholar 

  28. S.F. Poor, T.B. Hoang, L. Midolo, C.P. Dietrich, L.H. Li, E.H. Linfield et al., Efficient coupling of single photons to ridge-waveguide photonic integrated circuits. Appl. Phys. Lett. 102, 131105 (2013)

    Google Scholar 

  29. T.B. Hoang, J. Beetz, M. Lermer, L. Midolo, M. Kamp, S. Hofling et al., Widely tunable, efficient on-chip single photon sources at telecommunication wavelengths. Opt. Express 20, 21758–21765 (2012)

    Article  ADS  Google Scholar 

  30. L. Midolo, F. Pagliano, T.B. Hoang, T. Xia, F.W.M. van Otten, L.H. Li et al., Spontaneous emission control of single quantum dots by electromechanical tuning of a photonic crystal cavity. Appl. Phys. Lett. 101, 091106 (2012)

    Google Scholar 

  31. A.D. Ferguson, A. Kuver, J.M. Heaton, Y. Zhou, C.M. Snowden, S. Iezekiel, Low-loss, single-mode GaAs/AlGaAs waveguides with large core thickness. IEE Proc. Optoelectron. 153, 51–56 (2006)

    Article  Google Scholar 

  32. J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J.W. Silverstone et al., Gallium arsenide (GaAs) quantum photonic waveguide circuits. Opt. Commun. 327, 49–55 (2014)

    Article  ADS  Google Scholar 

  33. I.J. Luxmoore, N.A. Wasley, A.J. Ramsay, A.C.T. Thijssen, R. Oulton, M. Hugues et al., Interfacing spins in an in GaAs quantum dot to a semiconductor waveguide circuit using emitted photons. Phys. Rev. Lett. 110, 037402 (2013)

    Article  ADS  Google Scholar 

  34. J.J. Renema, R. Gaudio, Q. Wang, Z. Zhou, A. Gaggero, F. Mattioli et al., Experimental test of theories of the detection mechanism in a nanowire superconducting single photon detector. Phys. Rev. Lett. 112, 117604 (2014)

    Google Scholar 

  35. F. Marsili, D. Bitauld, A. Fiore, A. Gaggero, F. Mattioli, R. Leoni et al., High efficiency NbN nanowire superconducting single photon detectors fabricated on MgO substrates from a low temperature process. Opt. Express 16, 3191–3196 (2008)

    Article  ADS  Google Scholar 

  36. S.N. Dorenbos, E.M. Reiger, U. Perinetti, V. Zwiller, T. Zijlstra, T.M. Klapwijk, Low noise superconducting single photon detectors on silicon. Appl. Phys. Lett. 93, 131101 (2008)

    Google Scholar 

  37. H. Xiaolong, C.W. Holzwarth, D. Masciarelli, E.A. Dauler, K.K. Berggren, Efficiently coupling light to superconducting nanowire single-photon detectors. IEEE Trans. Appl. Supercond. 19, 336–340 (2009)

    Article  ADS  Google Scholar 

  38. A. Gaggero, S.J. Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld et al., Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications. Appl. Phys. Lett. 97, 151108 (2010)

    Google Scholar 

  39. D. Sahin, A. Gaggero, Z. Zhou, S. Jahanmirinejad, F. Mattioli, R. Leoni et al., Waveguide photon-number-resolving detectors for quantum photonic integrated circuits. Appl. Phys. Lett. 103, 111116 (2013)

    Google Scholar 

  40. G. Reithmaier, S. Lichtmannecker, T. Reichert, P. Hasch, K. Muller, M. Bichler et al., On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors. Sci. Rep. 3, 1901 (2013)

    Google Scholar 

  41. G. Reithmaier, M. Kaniber, F. Flassig, S. Lichtmannecker, K. Müller, A. Andrejew, J. Vuckovic, R. Gross, J. Finley, On-chip generation, routing and detection of quantum light. Nano Lett. 15, 5208 (2015)

    Google Scholar 

  42. B. Baek, A.E. Lita, V. Verma, S.W. Nam, Superconducting a-\({\rm W}_{x}{\rm Si}_{1-x}\) nanowire single-photon detector with saturated internal quantum efficiency from visible to 1850 nm. Appl. Phys. Lett. 98, 251105 (2011)

    Google Scholar 

  43. F. Marsili, V.B. Verma, J.A. Stern, S. Harrington, A.E. Lita, T. Gerrits et al., Detecting single infrared photons with 93% system efficiency. Nat. Photon. 7, 210–214 (2013)

    Google Scholar 

  44. Z. Wang, A. Kawakami, Y. Uzawa, B. Komiyama, Superconducting properties and crystal structures of single-crystal niobium nitride thin films deposited at ambient substrate temperature. J. Appl. Phys. 79, 7837–7842 (1996)

    Article  ADS  Google Scholar 

  45. Y.B. Vachtomin, M.I. Finkel, S.V. Antipov, B.M. Voronov, K.V. Sminov, N.S. Kaurova, et al., Gain bandwidth of phonon-cooled HEB mixer made of NbN thin film with MgO buffer layer on Si, in Proceedings of the 13th International Symposium on Space Terahertz Technology (unpublished),Cambridge, MA, (2002) p. 259

    Google Scholar 

  46. F. Marsili, D. Bitauld, A. Fiore, A. Gaggero, F. Mattioli, R. Leoni et al., High efficiency NbN nanowire superconducting single photon detectors fabricated on MgO substrates from a low temperature process. Opt. Express 16, 3191–3196 (2008)

    Article  ADS  Google Scholar 

  47. P. Yagoubov, G. Gol’tsman, B. Voronov, L. Seidman, V. Siomash, S. Cherednichenko, et al., The bandwidth of HEB mixers employing ultrathin NbN films on sapphire substrate, in Presented at the 7th Int. Symp. on Space Terahertz Tech., Charlottesville, VA (1996) pp. 290-302

    Google Scholar 

  48. D. Sahin, A. Gaggero, J.W. Weber, I. Agafonov, M.A. Verheijen, F. Mattioli et al., Waveguide nanowire superconducting single-photon detectors fabricated on GaAs and the study of their optical properties. IEEE J. Sel. Top. Quantum Electron. 21, 1–10 (2015)

    Article  Google Scholar 

  49. A. Guillén-Cervantes, Z. Rivera-Alvarez, M. López-López, E. López-Luna, I. Hernández-Calderón, GaAs surface oxide desorption by annealing in ultra high vacuum. Thin Solid Films 373, 159–163 (2000)

    Article  ADS  Google Scholar 

  50. Y. Dubi, Y. Meir, Y. Avishai, Nature of the superconductor-insulator transition in disordered superconductors. Nature 449, 876–880 (2007)

    Article  ADS  Google Scholar 

  51. D. Sahin, PhD Thesis, Waveguide single-photon and photon-number-resolving detectors, Chapter 5, Eindhoven University of Technology. ISBN: 978-90-386-3537-8 (2014)

    Google Scholar 

  52. S. Jahanmirinejad, A. Fiore, Proposal for a superconducting photon number resolving detector with large dynamic range. Opt. Express 20, 5017–5028 (2012)

    Article  ADS  Google Scholar 

  53. S. Jahanmirinejad, G. Frucci, F. Mattioli, D. Sahin, A. Gaggero, R. Leoni et al., Photon-number resolving detector based on a series array of superconducting nanowires. Appl. Phys. Lett. 101, 072602 (2012)

    Google Scholar 

  54. D. Sahin, A. Gaggero, T.B. Hoang, G. Frucci, F. Mattioli, R. Leoni et al., Integrated autocorrelator based on superconducting nanowires. Opt. Express 21, 11162–11170 (2013)

    Article  ADS  Google Scholar 

  55. A.J. Kerman, E.A. Dauler, J.K.W. Yang, K.M. Rosfjord, V. Anant, K.K. Berggren et al., Constriction-limited detection efficiency of superconducting nanowire single-photon detectors. Appl. Phys. Lett. 90, 101110 (2007)

    Google Scholar 

  56. J.A. O’Connor, P.A. Dalgarno, M.G. Tanner, R.J. Warburton, R.H. Hadfield, B. Baek et al., Nano-optical studies of superconducting nanowire single photon detectors, in Quantum Communication and Quantum Networking, ed. by A. Sergienko, S. Pascazio, P. Villoresi (Springer, Berlin, 2010), pp. 158–166

    Google Scholar 

  57. F. Mattioli, R. Leoni, A. Gaggero, M.G. Castellano, P. Carelli, F. Marsili et al., Electrical characterization of superconducting single-photon detectors. J. Appl. Phys. 101, 054302 (2007)

    Google Scholar 

  58. R. Gaudio, K.P.M. op ’t Hoog, Z. Zhou, D. Sahin, A. Fiore, Inhomogeneous critical current in nanowire superconducting single-photon detectors, Appl. Phys. Lett. 105, 222602 (2014)

    Google Scholar 

  59. F. Marsili, D. Bitauld, A. Gaggero, S. Jahanmirinejad, R. Leoni, F. Mattioli et al., Physics and application of photon number resolving detectors based on superconducting parallel nanowires. New J. Phys. 11, 045022 (2009)

    Article  ADS  Google Scholar 

  60. A. Gaggero, D. Sahin, P. Jiang, F. Mattioli, R. Leoni, J. Beetz, et al., Fully-integrated Hanbury Brown and Twiss interferometer, under preparation (2015)

    Google Scholar 

  61. F. Marsili, F. Bellei, F. Najafi, A.E. Dane, E.A. Dauler, R.J. Molnar et al., Efficient single photon detection from 500 nm to 5 \(\upmu {\rm m}\) wavelength. Nano Lett. 12, 4799 (2012)

    Google Scholar 

  62. C. Schuck, W.H.P. Pernice, H.X. Tang, Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate. Sci. Rep. 3, 1893 (2013)

    Google Scholar 

  63. E.A. Dauler, B.S. Robinson, A.J. Kerman, J.K.W. Yang, K.M. Rosfjord, V. Anant et al., Multi-element superconducting nanowire single-photon detector. IEEE Trans. Appl. Supercond. 17, 279–284 (2007)

    Article  ADS  Google Scholar 

  64. T. Yamashita, S. Miki, H. Terai, K. Makise, Z. Wang, Crosstalk-free operation of multielement superconducting nanowire single-photon detector array integrated with single-flux-quantum circuit in a 0.1 W Gifford-McMahon Cryocooler. Opt. Lett. 37, 2982–2984 (2012)

    Article  ADS  Google Scholar 

  65. M. Fujiwara, M. Sasaki, Direct measurement of photon number statistics at telecom wavelengths using a charge integration photon detector. Appl. Opt. 46, 3069–3074 (2007)

    Article  ADS  Google Scholar 

  66. D. Rosenberg, A.J. Kerman, R.J. Molnar, E.A. Dauler, High-speed and high-efficiency superconducting nanowire single photon detector array. Opt. Express 21, 1440–1447 (2013)

    Article  ADS  Google Scholar 

  67. B. Calkins, P.L. Mennea, A.E. Lita, B.J. Metcalf, W.S. Kolthammer, A. Lamas-Linares et al., High quantum-efficiency photon-number-resolving detector for photonic on-chip information processing. Opt. Express 21, 22657–22670 (2013)

    Article  ADS  Google Scholar 

  68. B.E. Kardynal, Z.L. Yuan, A.J. Shields, An avalanche-photodiode-based photon-number-resolving detector. Nat. Photon. 2, 425–428 (2008)

    Google Scholar 

  69. M.J. Fitch, B.C. Jacobs, T.B. Pittman, J.D. Franson, Photon-number resolution using time-multiplexed single-photon detectors. Phys. Rev. A 68, 043814 (2003)

    Article  ADS  Google Scholar 

  70. E. Pomarico, B. Sanguinetti, R. Thew, H. Zbinden, Room temperature photon number resolving detector for infrared wavelengths. Opt. Express 18, 10750–10759 (2010)

    Article  ADS  Google Scholar 

  71. A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli et al., Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths. Nat. Photon 2, 302–306 (2008)

    Article  Google Scholar 

  72. E.A. Dauler, A.J. Kerman, B.S. Robinson, J.K.W. Yang, B. Voronov, G. Goltsman et al., Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors. J. Mod. Opt. 56, 364–373 (2009)

    Article  ADS  Google Scholar 

  73. D. Sahin, A. Gaggero, G. Frucci, S. Jahanmirinejad, J.P. Sprengers, F. Mattioli, et al., Waveguide superconducting single-photon autocorrelators for quantum photonic applications, (2013) Proc. SPIE Opto. pp. 86351B-86351B-6

    Google Scholar 

  74. Z. Zhou et al., S. Jahanmirinejad, F. Mattioli, D. Sahin, G. Frucci, A. Gaggero et al., Superconducting series nanowire detector counting up to twelve photons. Opt. Express 22, 3475-3489 (2014)

    Google Scholar 

  75. F. Mattioli, Z. Zhou, A. Gaggero, R. Gaudio, S. Jahanmirinejad et al., Photon-number-resolving superconducting nanowire detectors. Superconductor Science and Technology 28(10), 104001 (2015)

    Google Scholar 

  76. A.J. Kerman, E.A. Dauler, W.E. Keicher, J.K.W. Yang, K.K. Berggren, G. Gol’tsman et al., Kinetic-inductance-limited reset time of superconducting nanowire photon counters. Appl. Phys. Lett. 88, 111116 (2006)

    Google Scholar 

  77. T. Huang, X. Wang, J. Shao, X. Guo, L. Xiao, S. Jia, Single event photon statistics characterization of a single photon source in an imperfect detection system. J. Lumin. 124, 286–290 (2007)

    Article  Google Scholar 

  78. V. Anant, A.J. Kerman, E.A. Dauler, J.K.W. Yang, K.M. Rosfjord, K.K. Berggren, Optical properties of superconducting nanowire single-photon detectors. Opt. Express 16, 10750–10761 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Döndü Sahin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sahin, D., Gaggero, A., Leoni, R., Fiore, A. (2016). Waveguide Superconducting Single- and Few-Photon Detectors on GaAs for Integrated Quantum Photonics. In: Hadfield, R., Johansson, G. (eds) Superconducting Devices in Quantum Optics. Quantum Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-24091-6_3

Download citation

Publish with us

Policies and ethics