Advertisement

Waveguide Superconducting Single- and Few-Photon Detectors on GaAs for Integrated Quantum Photonics

  • Döndü SahinEmail author
  • Alessandro Gaggero
  • Roberto Leoni
  • Andrea Fiore
Chapter
  • 2.1k Downloads
Part of the Quantum Science and Technology book series (QST)

Abstract

Integrated quantum photonics offers three principal advantages over bulk optics—low loss, simplicity and scalability. Quantum photonic integrated circuits show promise for on-chip generation, manipulation and detection of tens of single photons for quantum information processing. For quantum photonic integration, gallium arsenide is one of the most promising material platforms as full integration of all active and passive circuit elements can be obtained.

Keywords

Electron Beam Lithography Transition Edge Sensor Ridge Waveguide Waveguide Length Modal Absorption Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    X.-C. Yao, T.-X. Wang, P. Xu, H. Lu, G.-S. Pan, X.-H. Bao et al., Observation of eight-photon entanglement. Nat. Photon. 6, 225–228 (2012)Google Scholar
  2. 2.
    J.L. O’Brien, A. Furusawa, J. Vučković, Photonic quantum technologies. Nat. Photonics 3, 687–695 (2009)CrossRefADSGoogle Scholar
  3. 3.
    G.N. Gol’tsman et al., O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov et al., Picosecond superconducting single-photon optical detector. Appl. Phys. Lett. 79, 705-707 (2001)Google Scholar
  4. 4.
    N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, Quantum cryptography. Rev. Mod. Phys. 74, 96–145 (2002)CrossRefGoogle Scholar
  5. 5.
    J.L. O’Brien, G.J. Pryde, A.G. White, T.C. Ralph, D. Branning, Demonstration of an all-optical quantum controlled-NOT gate. Nature 426, 264–267 (2003)CrossRefADSGoogle Scholar
  6. 6.
    E. Knill, R. Laflamme, G.J. Milburn, A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)CrossRefADSGoogle Scholar
  7. 7.
    R. Raussendorf, H.J. Briegel, A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001)CrossRefADSGoogle Scholar
  8. 8.
    A. Aspuru-Guzik, P. Walther, Photonic quantum simulators. Nat. Phys. 8, 285–291 (2012)Google Scholar
  9. 9.
    A. Politi, M.J. Cryan, J.G. Rarity, S.Y. Yu, J.L. O’Brien, Silica-on-silicon waveguide quantum circuits. Science 320, 646–649 (2008)CrossRefADSGoogle Scholar
  10. 10.
    P.J. Shadbolt, M.R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino et al., Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit. Nat. Photon. 6, 45–49 (2012)Google Scholar
  11. 11.
    A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino et al., Integrated photonic quantum gates for polarization qubits. Nat. Commun. 2, 566 (2011)Google Scholar
  12. 12.
    A. Peruzzo, M. Lobino, J.C.F. Matthews, N. Matsuda, A. Politi, K. Poulios et al., Quantum walks of correlated photons. Science 329, 1500–1503 (2010)CrossRefADSGoogle Scholar
  13. 13.
    S. Aaronson, A. Arkhipov, The computational complexity of linear optics, in Stoc 11: Proceedings of the 43rd ACM Symposium on Theory of Computing, pp. 333-342 (2011)Google Scholar
  14. 14.
    A. Crespi, R. Osellame, R. Ramponi, D.J. Brod, E.F. Galvao, N. Spagnolo et al., Integrated multimode interferometers with arbitrary designs for photonic boson sampling. Nat. Photon. 7, 545–549 (2013)Google Scholar
  15. 15.
    J.B. Spring, B.J. Metcalf, P.C. Humphreys, W.S. Kolthammer, X.M. Jin, M. Barbieri et al., Boson sampling on a photonic chip. Science 339, 798–801 (2013)CrossRefADSGoogle Scholar
  16. 16.
    M. Tillmann, B. Dakic, R. Heilmann, S. Nolte, A. Szameit, P. Walther, Experimental boson sampling. Nat. Photon. 7, 540–544 (2013)Google Scholar
  17. 17.
    A.J. Shields, Semiconductor quantum light sources. Nat. Photon 1, 215–223 (2007)Google Scholar
  18. 18.
    A. Martin, O. Alibart, M.P.D. Micheli, D.B. Ostrowsky, S. Tanzilli, A quantum relay chip based on telecommunication integrated optics technology. New J. Phys. 14, 025002 (2012)CrossRefADSGoogle Scholar
  19. 19.
    N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W.J. Munro, K. Shimizu et al., A monolithically integrated polarization entangled photon pair source on a silicon chip. Sci. Rep. 2 (2012)Google Scholar
  20. 20.
    J.W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka et al., On-chip quantum interference between silicon photon-pair sources. Nat. Photon. 8, 104–108 (2014)Google Scholar
  21. 21.
    T. Gerrits, N. Thomas-Peter, J.C. Gates, A.E. Lita, B.J. Metcalf, B. Calkins et al., On-chip, photon-number-resolving, telecommunication-band detectors for scalable photonic information processing. Phys. Rev. A 84, 060301 (2011)CrossRefADSGoogle Scholar
  22. 22.
    J.P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli et al., Waveguide superconducting single-photon detectors for integrated quantum photonic circuits. Appl. Phys. Lett. 99, 181110 (2011)Google Scholar
  23. 23.
    W.H.P. Pernice, C. Schuck, O. Minaeva, M. Li, G.N. Goltsman, A.V. Sergienko et al., High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nat. Commun. 3, 1325 (2012)Google Scholar
  24. 24.
    O. Benson, C. Santori, M. Pelton, Y. Yamamoto, Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 84, 2513–2516 (2000)CrossRefADSGoogle Scholar
  25. 25.
    S. Buckley, K. Rivoire, J. Vuckovic, Engineered quantum dot single-photon sources. Rep. Prog. Phys. 75, 126503 (2012)Google Scholar
  26. 26.
    P. Lodahl, S. Mahmoodian, S. Stobbe, Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347 (2015)Google Scholar
  27. 27.
    M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu et al., Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Phys. Rev. Lett. 113, 093603 (2014)CrossRefADSGoogle Scholar
  28. 28.
    S.F. Poor, T.B. Hoang, L. Midolo, C.P. Dietrich, L.H. Li, E.H. Linfield et al., Efficient coupling of single photons to ridge-waveguide photonic integrated circuits. Appl. Phys. Lett. 102, 131105 (2013)Google Scholar
  29. 29.
    T.B. Hoang, J. Beetz, M. Lermer, L. Midolo, M. Kamp, S. Hofling et al., Widely tunable, efficient on-chip single photon sources at telecommunication wavelengths. Opt. Express 20, 21758–21765 (2012)CrossRefADSGoogle Scholar
  30. 30.
    L. Midolo, F. Pagliano, T.B. Hoang, T. Xia, F.W.M. van Otten, L.H. Li et al., Spontaneous emission control of single quantum dots by electromechanical tuning of a photonic crystal cavity. Appl. Phys. Lett. 101, 091106 (2012)Google Scholar
  31. 31.
    A.D. Ferguson, A. Kuver, J.M. Heaton, Y. Zhou, C.M. Snowden, S. Iezekiel, Low-loss, single-mode GaAs/AlGaAs waveguides with large core thickness. IEE Proc. Optoelectron. 153, 51–56 (2006)CrossRefGoogle Scholar
  32. 32.
    J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J.W. Silverstone et al., Gallium arsenide (GaAs) quantum photonic waveguide circuits. Opt. Commun. 327, 49–55 (2014)CrossRefADSGoogle Scholar
  33. 33.
    I.J. Luxmoore, N.A. Wasley, A.J. Ramsay, A.C.T. Thijssen, R. Oulton, M. Hugues et al., Interfacing spins in an in GaAs quantum dot to a semiconductor waveguide circuit using emitted photons. Phys. Rev. Lett. 110, 037402 (2013)CrossRefADSGoogle Scholar
  34. 34.
    J.J. Renema, R. Gaudio, Q. Wang, Z. Zhou, A. Gaggero, F. Mattioli et al., Experimental test of theories of the detection mechanism in a nanowire superconducting single photon detector. Phys. Rev. Lett. 112, 117604 (2014)Google Scholar
  35. 35.
    F. Marsili, D. Bitauld, A. Fiore, A. Gaggero, F. Mattioli, R. Leoni et al., High efficiency NbN nanowire superconducting single photon detectors fabricated on MgO substrates from a low temperature process. Opt. Express 16, 3191–3196 (2008)CrossRefADSGoogle Scholar
  36. 36.
    S.N. Dorenbos, E.M. Reiger, U. Perinetti, V. Zwiller, T. Zijlstra, T.M. Klapwijk, Low noise superconducting single photon detectors on silicon. Appl. Phys. Lett. 93, 131101 (2008)Google Scholar
  37. 37.
    H. Xiaolong, C.W. Holzwarth, D. Masciarelli, E.A. Dauler, K.K. Berggren, Efficiently coupling light to superconducting nanowire single-photon detectors. IEEE Trans. Appl. Supercond. 19, 336–340 (2009)CrossRefADSGoogle Scholar
  38. 38.
    A. Gaggero, S.J. Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld et al., Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications. Appl. Phys. Lett. 97, 151108 (2010)Google Scholar
  39. 39.
    D. Sahin, A. Gaggero, Z. Zhou, S. Jahanmirinejad, F. Mattioli, R. Leoni et al., Waveguide photon-number-resolving detectors for quantum photonic integrated circuits. Appl. Phys. Lett. 103, 111116 (2013)Google Scholar
  40. 40.
    G. Reithmaier, S. Lichtmannecker, T. Reichert, P. Hasch, K. Muller, M. Bichler et al., On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors. Sci. Rep. 3, 1901 (2013)Google Scholar
  41. 41.
    G. Reithmaier, M. Kaniber, F. Flassig, S. Lichtmannecker, K. Müller, A. Andrejew, J. Vuckovic, R. Gross, J. Finley, On-chip generation, routing and detection of quantum light. Nano Lett. 15, 5208 (2015)Google Scholar
  42. 42.
    B. Baek, A.E. Lita, V. Verma, S.W. Nam, Superconducting a-\({\rm W}_{x}{\rm Si}_{1-x}\) nanowire single-photon detector with saturated internal quantum efficiency from visible to 1850 nm. Appl. Phys. Lett. 98, 251105 (2011)Google Scholar
  43. 43.
    F. Marsili, V.B. Verma, J.A. Stern, S. Harrington, A.E. Lita, T. Gerrits et al., Detecting single infrared photons with 93% system efficiency. Nat. Photon. 7, 210–214 (2013)Google Scholar
  44. 44.
    Z. Wang, A. Kawakami, Y. Uzawa, B. Komiyama, Superconducting properties and crystal structures of single-crystal niobium nitride thin films deposited at ambient substrate temperature. J. Appl. Phys. 79, 7837–7842 (1996)CrossRefADSGoogle Scholar
  45. 45.
    Y.B. Vachtomin, M.I. Finkel, S.V. Antipov, B.M. Voronov, K.V. Sminov, N.S. Kaurova, et al., Gain bandwidth of phonon-cooled HEB mixer made of NbN thin film with MgO buffer layer on Si, in Proceedings of the 13th International Symposium on Space Terahertz Technology (unpublished),Cambridge, MA, (2002) p. 259Google Scholar
  46. 46.
    F. Marsili, D. Bitauld, A. Fiore, A. Gaggero, F. Mattioli, R. Leoni et al., High efficiency NbN nanowire superconducting single photon detectors fabricated on MgO substrates from a low temperature process. Opt. Express 16, 3191–3196 (2008)CrossRefADSGoogle Scholar
  47. 47.
    P. Yagoubov, G. Gol’tsman, B. Voronov, L. Seidman, V. Siomash, S. Cherednichenko, et al., The bandwidth of HEB mixers employing ultrathin NbN films on sapphire substrate, in Presented at the 7th Int. Symp. on Space Terahertz Tech., Charlottesville, VA (1996) pp. 290-302Google Scholar
  48. 48.
    D. Sahin, A. Gaggero, J.W. Weber, I. Agafonov, M.A. Verheijen, F. Mattioli et al., Waveguide nanowire superconducting single-photon detectors fabricated on GaAs and the study of their optical properties. IEEE J. Sel. Top. Quantum Electron. 21, 1–10 (2015)CrossRefGoogle Scholar
  49. 49.
    A. Guillén-Cervantes, Z. Rivera-Alvarez, M. López-López, E. López-Luna, I. Hernández-Calderón, GaAs surface oxide desorption by annealing in ultra high vacuum. Thin Solid Films 373, 159–163 (2000)CrossRefADSGoogle Scholar
  50. 50.
    Y. Dubi, Y. Meir, Y. Avishai, Nature of the superconductor-insulator transition in disordered superconductors. Nature 449, 876–880 (2007)CrossRefADSGoogle Scholar
  51. 51.
    D. Sahin, PhD Thesis, Waveguide single-photon and photon-number-resolving detectors, Chapter 5, Eindhoven University of Technology. ISBN: 978-90-386-3537-8 (2014)Google Scholar
  52. 52.
    S. Jahanmirinejad, A. Fiore, Proposal for a superconducting photon number resolving detector with large dynamic range. Opt. Express 20, 5017–5028 (2012)CrossRefADSGoogle Scholar
  53. 53.
    S. Jahanmirinejad, G. Frucci, F. Mattioli, D. Sahin, A. Gaggero, R. Leoni et al., Photon-number resolving detector based on a series array of superconducting nanowires. Appl. Phys. Lett. 101, 072602 (2012)Google Scholar
  54. 54.
    D. Sahin, A. Gaggero, T.B. Hoang, G. Frucci, F. Mattioli, R. Leoni et al., Integrated autocorrelator based on superconducting nanowires. Opt. Express 21, 11162–11170 (2013)CrossRefADSGoogle Scholar
  55. 55.
    A.J. Kerman, E.A. Dauler, J.K.W. Yang, K.M. Rosfjord, V. Anant, K.K. Berggren et al., Constriction-limited detection efficiency of superconducting nanowire single-photon detectors. Appl. Phys. Lett. 90, 101110 (2007)Google Scholar
  56. 56.
    J.A. O’Connor, P.A. Dalgarno, M.G. Tanner, R.J. Warburton, R.H. Hadfield, B. Baek et al., Nano-optical studies of superconducting nanowire single photon detectors, in Quantum Communication and Quantum Networking, ed. by A. Sergienko, S. Pascazio, P. Villoresi (Springer, Berlin, 2010), pp. 158–166Google Scholar
  57. 57.
    F. Mattioli, R. Leoni, A. Gaggero, M.G. Castellano, P. Carelli, F. Marsili et al., Electrical characterization of superconducting single-photon detectors. J. Appl. Phys. 101, 054302 (2007)Google Scholar
  58. 58.
    R. Gaudio, K.P.M. op ’t Hoog, Z. Zhou, D. Sahin, A. Fiore, Inhomogeneous critical current in nanowire superconducting single-photon detectors, Appl. Phys. Lett. 105, 222602 (2014)Google Scholar
  59. 59.
    F. Marsili, D. Bitauld, A. Gaggero, S. Jahanmirinejad, R. Leoni, F. Mattioli et al., Physics and application of photon number resolving detectors based on superconducting parallel nanowires. New J. Phys. 11, 045022 (2009)CrossRefADSGoogle Scholar
  60. 60.
    A. Gaggero, D. Sahin, P. Jiang, F. Mattioli, R. Leoni, J. Beetz, et al., Fully-integrated Hanbury Brown and Twiss interferometer, under preparation (2015)Google Scholar
  61. 61.
    F. Marsili, F. Bellei, F. Najafi, A.E. Dane, E.A. Dauler, R.J. Molnar et al., Efficient single photon detection from 500 nm to 5 \(\upmu {\rm m}\) wavelength. Nano Lett. 12, 4799 (2012)Google Scholar
  62. 62.
    C. Schuck, W.H.P. Pernice, H.X. Tang, Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate. Sci. Rep. 3, 1893 (2013)Google Scholar
  63. 63.
    E.A. Dauler, B.S. Robinson, A.J. Kerman, J.K.W. Yang, K.M. Rosfjord, V. Anant et al., Multi-element superconducting nanowire single-photon detector. IEEE Trans. Appl. Supercond. 17, 279–284 (2007)CrossRefADSGoogle Scholar
  64. 64.
    T. Yamashita, S. Miki, H. Terai, K. Makise, Z. Wang, Crosstalk-free operation of multielement superconducting nanowire single-photon detector array integrated with single-flux-quantum circuit in a 0.1 W Gifford-McMahon Cryocooler. Opt. Lett. 37, 2982–2984 (2012)CrossRefADSGoogle Scholar
  65. 65.
    M. Fujiwara, M. Sasaki, Direct measurement of photon number statistics at telecom wavelengths using a charge integration photon detector. Appl. Opt. 46, 3069–3074 (2007)CrossRefADSGoogle Scholar
  66. 66.
    D. Rosenberg, A.J. Kerman, R.J. Molnar, E.A. Dauler, High-speed and high-efficiency superconducting nanowire single photon detector array. Opt. Express 21, 1440–1447 (2013)CrossRefADSGoogle Scholar
  67. 67.
    B. Calkins, P.L. Mennea, A.E. Lita, B.J. Metcalf, W.S. Kolthammer, A. Lamas-Linares et al., High quantum-efficiency photon-number-resolving detector for photonic on-chip information processing. Opt. Express 21, 22657–22670 (2013)CrossRefADSGoogle Scholar
  68. 68.
    B.E. Kardynal, Z.L. Yuan, A.J. Shields, An avalanche-photodiode-based photon-number-resolving detector. Nat. Photon. 2, 425–428 (2008)Google Scholar
  69. 69.
    M.J. Fitch, B.C. Jacobs, T.B. Pittman, J.D. Franson, Photon-number resolution using time-multiplexed single-photon detectors. Phys. Rev. A 68, 043814 (2003)CrossRefADSGoogle Scholar
  70. 70.
    E. Pomarico, B. Sanguinetti, R. Thew, H. Zbinden, Room temperature photon number resolving detector for infrared wavelengths. Opt. Express 18, 10750–10759 (2010)CrossRefADSGoogle Scholar
  71. 71.
    A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli et al., Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths. Nat. Photon 2, 302–306 (2008)CrossRefGoogle Scholar
  72. 72.
    E.A. Dauler, A.J. Kerman, B.S. Robinson, J.K.W. Yang, B. Voronov, G. Goltsman et al., Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors. J. Mod. Opt. 56, 364–373 (2009)CrossRefADSGoogle Scholar
  73. 73.
    D. Sahin, A. Gaggero, G. Frucci, S. Jahanmirinejad, J.P. Sprengers, F. Mattioli, et al., Waveguide superconducting single-photon autocorrelators for quantum photonic applications, (2013) Proc. SPIE Opto. pp. 86351B-86351B-6Google Scholar
  74. 74.
    Z. Zhou et al., S. Jahanmirinejad, F. Mattioli, D. Sahin, G. Frucci, A. Gaggero et al., Superconducting series nanowire detector counting up to twelve photons. Opt. Express 22, 3475-3489 (2014)Google Scholar
  75. 75.
    F. Mattioli, Z. Zhou, A. Gaggero, R. Gaudio, S. Jahanmirinejad et al., Photon-number-resolving superconducting nanowire detectors. Superconductor Science and Technology 28(10), 104001 (2015)Google Scholar
  76. 76.
    A.J. Kerman, E.A. Dauler, W.E. Keicher, J.K.W. Yang, K.K. Berggren, G. Gol’tsman et al., Kinetic-inductance-limited reset time of superconducting nanowire photon counters. Appl. Phys. Lett. 88, 111116 (2006)Google Scholar
  77. 77.
    T. Huang, X. Wang, J. Shao, X. Guo, L. Xiao, S. Jia, Single event photon statistics characterization of a single photon source in an imperfect detection system. J. Lumin. 124, 286–290 (2007)CrossRefGoogle Scholar
  78. 78.
    V. Anant, A.J. Kerman, E.A. Dauler, J.K.W. Yang, K.M. Rosfjord, K.K. Berggren, Optical properties of superconducting nanowire single-photon detectors. Opt. Express 16, 10750–10761 (2008)CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Döndü Sahin
    • 1
    Email author
  • Alessandro Gaggero
    • 2
  • Roberto Leoni
    • 2
  • Andrea Fiore
    • 3
  1. 1.Centre for Quantum PhotonicsH. H. Wills Physics Laboratory, University of BristolBristol, BS8 1TLUK
  2. 2.Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Richerche (CNR)RomaItaly
  3. 3.COBRA Research InstituteEindhoven University of TechnologyMB EindhovenThe Netherlands

Personalised recommendations