Superconducting Transition Edge Sensors for Quantum Optics

  • Thomas GerritsEmail author
  • Adriana Lita
  • Brice Calkins
  • Sae Woo Nam
Part of the Quantum Science and Technology book series (QST)


High efficiency single-photon detectors allow novel measurements in quantum information processing and quantum photonic systems. The photon-number resolving transition edge sensor (TES) is known for its near-unity detection efficiency and has been used in a number of landmark quantum optics experiments. We review the operating principle of the optical superconducting TES, its use for quantum optics and quantum information processing and review its recent implementation in integrated photonic platforms.


Detection Efficiency Photon Number Transition Edge Sensor Timing Jitter Optical Photon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Quantum Information Science Initiative (QISI) and the NIST ‘Innovations in Measurement Science’ Program. The NIST authors thank all collaborators who enabled the joint experiments summarized in this chapter.


  1. 1.
    B. Cabrera et al., Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors. Appl. Phys. Lett. 73, 735 (1998)CrossRefADSGoogle Scholar
  2. 2.
    D. Rosenberg et al., Quantum key distribution at telecom wavelengths with noise-free detectors. Appl. Phys. Lett. 88, 021108 (2006)CrossRefADSGoogle Scholar
  3. 3.
    T. Gerrits et al., Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum. Phys. Rev. A 82, 031802 (2010)CrossRefADSGoogle Scholar
  4. 4.
    D. Rosenberg et al., Long-distance decoy-state quantum key distribution in optical fiber. Phys. Rev. Lett. 98, 010503 (2007)CrossRefADSGoogle Scholar
  5. 5.
    R.W. Romani et al., First astronomical application of a cryogenic transition edge sensor spectrophotometer. Astrophys. J. 521, L153 (1999)CrossRefADSGoogle Scholar
  6. 6.
    J. Burney et al., Transition-edge sensor arrays UV-optical-IR astrophysics. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel., Spectrom., Detect. Assoc. Equip. 559, 525–527 (2006)CrossRefADSGoogle Scholar
  7. 7.
    A.E. Lita, A.J. Miller, S.W. Nam, Counting near-infrared single-photons with 95 % efficiency. Opt. Express 16, 3032 (2008)CrossRefADSGoogle Scholar
  8. 8.
    M.D. Eisaman et al., Invited review article: single-photon sources and detectors. Rev. Sci. Instrum. 82, 071101 (2011)CrossRefADSGoogle Scholar
  9. 9.
    K.D. Irwin, G.C. Hilton, Transition-Edge Sensors, in Cryogenic Particle Detection (Springer, Heidelberg, 2005)Google Scholar
  10. 10.
    D. Fukuda et al., Titanium superconducting photon-number-resolving detector. IEEE Trans. Appl. Supercond. 21, 241 (2011)CrossRefADSGoogle Scholar
  11. 11.
    L. Lolli, E. Taralli, M. Rajteri, Ti/Au TES to discriminate single photons. J. Low Temp. Phys. 167, 803 (2012)CrossRefADSGoogle Scholar
  12. 12.
    D.F. Santavicca, F.W. Carter, D.E. Prober, Proposal for a GHz count rate near-IR single-photon detector based on a nanoscale superconducting transition edge sensor. Proc. SPIE 8033, Adv. Photon Count. Tech. V 80330W, (2011)Google Scholar
  13. 13.
    A.J. Miller et al., Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent. Opt. Express 19, 9102 (2011)CrossRefADSGoogle Scholar
  14. 14.
    B. Cabrera, Introduction to TES physics. J. Low Temp. Phys. 151, 82 (2008)CrossRefADSGoogle Scholar
  15. 15.
    K.D. Irwin, An application of electrothermal feedback for high resolution cryogenic particle detection. Appl. Phys. Lett. 66, 1998 (1995)CrossRefADSGoogle Scholar
  16. 16.
    D.J. Fixsen et al., Pulse estimation in nonlinear detectors with nonstationary noise. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel., Spectrom., Detect. Assoc. Equip. 520, 555 (2004)CrossRefADSGoogle Scholar
  17. 17.
    R. Jaklevic et al., Quantum interference effects in Josephson tunneling. Phys. Rev. Lett. 12, 159 (1964)CrossRefADSGoogle Scholar
  18. 18.
    R.P. Welty, J.M. Martinis, A series array of DC SQUIDs. IEEE Trans. Magn. 27, 2924 (1991)CrossRefADSGoogle Scholar
  19. 19.
    C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1956)zbMATHGoogle Scholar
  20. 20.
    G. Dresselhaus, M. Dresselhaus, Interband transitions in superconductors. Phys. Rev. 125, 1212 (1962)CrossRefADSzbMATHGoogle Scholar
  21. 21.
    A.E. Lita et al., Superconducting transition-edge sensors optimized for high-efficiency photon-number resolving detectors. Proc. SPIE 7681, Advanced Photon Count. Tech. IV 76810D (2010)Google Scholar
  22. 22.
    A.E. Lita et al., High-efficiency photon-number-resolving detectors based on hafnium transition-edge sensors. AIP Conf. Proc. 1185, 351 (2009)CrossRefADSGoogle Scholar
  23. 23.
    A.E. Lita et al., Tuning of tungsten thin film superconducting transition temperature for fabrication of photon number resolving detectors. Appl. Supercond., IEEE Trans. 15, 3528 (2005)CrossRefGoogle Scholar
  24. 24.
    G. Fujii et al., Thin gold covered titanium transition edge sensor for optical measurement. J. Low Temp. Phys. 167, 815 (2012)CrossRefADSGoogle Scholar
  25. 25.
    R.H. Hadfield, Single-photon detectors for optical quantum information applications. Nat. Photon. 3, 696 (2009)Google Scholar
  26. 26.
    B. Calkins et al., Faster recovery time of a hot-electron transition-edge sensor by use of normal metal heat-sinks. Appl. Phys. Lett. 99, 241114 (2011)CrossRefADSGoogle Scholar
  27. 27.
    A. Lamas-Linares et al., Nanosecond-scale timing jitter for single photon detection in transition edge sensors. Appl. Phys. Lett. 102, 231117 (2013)CrossRefADSGoogle Scholar
  28. 28.
    J.S. Lundeen et al., Tomography of quantum detectors. Nat. Phys. 5, 27 (2009)Google Scholar
  29. 29.
    D. Achilles et al., Fiber-assisted detection with photon number resolution. Optics Lett. 28, 2387 (2003)CrossRefADSGoogle Scholar
  30. 30.
    T. Bartley et al., Direct observation of sub-binomial light. Phys. Rev. Lett. 110, 173602 (2013)CrossRefADSGoogle Scholar
  31. 31.
    D. Rosenberg et al., Noise-free high-efficiency photon-number-resolving detectors. Phys. Rev. A 71, 061803 (2005)CrossRefADSGoogle Scholar
  32. 32.
    Z.H. Levine et al., Algorithm for finding clusters with a known distribution and its application to photon-number resolution using a superconducting transition-edge sensor. J. Opt. Soc. Am. B 29, 2066 (2012)CrossRefADSGoogle Scholar
  33. 33.
    D.J. Fixsen et al., Optimal energy measurement in nonlinear systems: an application of differential geometry. J. Low Temp. Phys. 176, 16 (2014)CrossRefADSGoogle Scholar
  34. 34.
    T. Gerrits et al., Extending single-photon optimized superconducting transition edge sensors beyond the single-photon counting regime. Opt. Express 20, 23798 (2012)CrossRefADSGoogle Scholar
  35. 35.
    G. Brida et al., Ancilla-assisted calibration of a measuring apparatus. Phys. Rev. Lett. 108, 253601 (2012)CrossRefADSGoogle Scholar
  36. 36.
    B. Giorgio et al., Quantum characterization of superconducting photon counters. New J. Phys. 14, 085001 (2012)CrossRefGoogle Scholar
  37. 37.
    P.C. Humphreys et al., Tomography of photon-number resolving continuous output detectors. New J. Phys. 17, 103044 (2015)Google Scholar
  38. 38.
    G. Di Giuseppe et al., Direct observation of photon pairs at a single output port of a beam-splitter interferometer. Phys. Rev. A 68, 063817 (2003)CrossRefADSGoogle Scholar
  39. 39.
    Y. Zhai et al., Photon-number-resolved detection of photon-subtracted thermal light. Opt. Lett. 38, 2171 (2013)CrossRefADSGoogle Scholar
  40. 40.
    B. Christensen et al., Detection-Loophole-free test of quantum nonlocality, and applications. Phys. Rev. Lett. 111, 130406 (2013)CrossRefADSGoogle Scholar
  41. 41.
    M. Giustina et al., Bell violation using entangled photons without the fair-sampling assumption. Nature 497, 227 (2013)CrossRefADSGoogle Scholar
  42. 42.
    C.K. Hong, Z.Y. Ou, L. Mandel, Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044 (1987)CrossRefADSGoogle Scholar
  43. 43.
    A. Gilchrist et al., Schrödinger cats and their power for quantum information processing. J. Opt. B: Quantum Semiclassical Opt. 6, S828 (2004)CrossRefADSGoogle Scholar
  44. 44.
    A.C. Lund, T.P. Ralph, H.L. Haselgrove, Fault-tolerant linear optical quantum computing with small-amplitude coherent states. Phys. Rev. Lett. 100, 030503 (2008)Google Scholar
  45. 45.
    A. Ourjoumtsev et al., Generation of optical Schrödinger cats from photon number states. Nature 448, 784 (2007)CrossRefADSGoogle Scholar
  46. 46.
    A. Ourjoumtsev et al., Generating Optical Schrödinger Kittens for Quantum Information Processing. Science 312, 83 (2006)CrossRefADSGoogle Scholar
  47. 47.
    K. Wakui et al., Photon subtracted squeezed states generated with periodically poled \({\rm KTiOPO}_{4}\). Opt. Express 15, 3568 (2007)Google Scholar
  48. 48.
    N. Namekata et al., Non-Gaussian operation based on photon subtraction using a photon-number-resolving detector at a telecommunications wavelength. Nat. Photon. 4, 655 (2010)Google Scholar
  49. 49.
    M. Dakna et al., Generating Schrödinger-cat-like states by means of conditional measurements on a beam splitter. Phys. Rev. A 55, 3184 (1997)CrossRefADSGoogle Scholar
  50. 50.
    S. Glancy, H.M. de Vasconcelos, Methods for producing optical coherent state superpositions. J. Opt. Soc. Am. B 25, 712 (2008)CrossRefADSGoogle Scholar
  51. 51.
    T.J. Bartley et al., Multiphoton state engineering by heralded interference between single photons and coherent states. Phys. Rev. A 86, 043820 (2012)CrossRefADSGoogle Scholar
  52. 52.
    A.I. Lvovsky, Iterative maximum-likelihood reconstruction in quantum homodyne tomography. J. Opt. B: Quantum Semiclassical Opt. 6, S556 (2004)CrossRefADSGoogle Scholar
  53. 53.
    K. Banaszek et al., Direct measurement of the Wigner function by photon counting. Phys. Rev. A 60, 674 (1999)CrossRefADSGoogle Scholar
  54. 54.
    K. Laiho et al., Probing the negative Wigner function of a pulsed single photon point by point. Phys. Rev. Lett. 105, 253603 (2010)CrossRefADSGoogle Scholar
  55. 55.
    G. Donati et al., Observing optical coherence across Fock layers with weak-field homodyne detectors. Nat. Commun. 5, 5584 (2014)Google Scholar
  56. 56.
    N. Sridhar et al., Direct measurement of the Wigner function by photon-number-resolving detection. J. Opt. Soc. Am. B 31, B34 (2014)CrossRefGoogle Scholar
  57. 57.
    T. Gerrits et al., On-chip, photon-number-resolving, telecommunication-band detectors for scalable photonic information processing. Phys. Rev. A 84, 060301 (2011)CrossRefADSGoogle Scholar
  58. 58.
    B. Calkins et al., High quantum-efficiency photon-number-resolving detector for photonic on-chip information processing. Opt. Express 21, 22657 (2013)CrossRefADSGoogle Scholar
  59. 59.
    J.P. Sprengers et al., Waveguide superconducting single-photon detectors for integrated quantum photonic circuits. Appl. Phys. Lett. 99, 181110 (2011)CrossRefADSGoogle Scholar
  60. 60.
    W.H.P. Pernice et al., High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nat. Commun. 3, 1325 (2012)Google Scholar
  61. 61.
    T. Gerrits et al., Generation of degenerate, factorizable, pulsed squeezed light at telecom wavelengths. Opt. Express 19, 24434 (2011)CrossRefADSGoogle Scholar
  62. 62.
    J.S. Bell, On the Einstein-Podolsky-Rosen paradox. Physics 1, 195 (1964)Google Scholar
  63. 63.
    M.A. Rowe et al., Experimental violation of a Bell’s inequality with efficient detection. Nature 409, 791 (2001)CrossRefGoogle Scholar
  64. 64.
    M. Ansmann et al., Violation of Bell’s inequality in Josephson phase qubits. Nature 461, 504 (2009)CrossRefADSGoogle Scholar
  65. 65.
    J. Hofmann et al., Heralded entanglement between widely separated atoms. Science 337, 72 (2012)CrossRefADSGoogle Scholar
  66. 66.
    T. Scheidl et al., Violation of local realism with freedom of choice. Proc. Natl. Acad. Sci. 107, 19708 (2010)CrossRefADSGoogle Scholar
  67. 67.
    J. Clauser et al., Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969)CrossRefADSGoogle Scholar
  68. 68.
    P.B. Dixon et al., Heralding efficiency and correlated mode coupling of near-IR fiber-coupled photon pairs. Phys. Rev. A 90, 043804 (2014)Google Scholar
  69. 69.
    R.S. Bennink, Optimal collinear Gaussian beams for spontaneous parametric down-conversion. Phys. Rev. A 81, 053805 (2010)CrossRefADSGoogle Scholar
  70. 70.
    P. Eberhard, Background level and counter efficiencies required for a loophole-free Einstein-Podolsky-Rosen experiment. Phys. Rev. A 47, R747 (1993)CrossRefADSGoogle Scholar
  71. 71.
    J. Clauser, M. Horne, Experimental consequences of objective local theories. Phys. Rev. D 10, 526 (1974)CrossRefADSGoogle Scholar
  72. 72.
    J.Å. Larsson, R.D. Gill, Bell’s inequality and the coincidence-time loophole. EPL (Europhysics Letters) 67, 707 (2004)CrossRefADSzbMATHGoogle Scholar
  73. 73.
    J.-Å. Larsson et al., Bell-inequality violation with entangled photons, free of the coincidence-time loophole. Phys. Rev. A 90, 032107 (2014)CrossRefADSGoogle Scholar
  74. 74.
    M.A. Broome et al., Photonic Boson sampling in a tunable circuit. Science 339, 794 (2013)CrossRefADSGoogle Scholar
  75. 75.
    A. Crespi et al., Integrated multimode interferometers with arbitrary designs for photonic boson sampling. Nat. Photon. 7, 545 (2013)Google Scholar
  76. 76.
    J.B. Spring et al., Boson sampling on a photonic chip. Science 339, 798 (2013)CrossRefADSGoogle Scholar
  77. 77.
    M. Tillmann et al., Experimental boson sampling. Nat. Photon. 7, 540 (2013)Google Scholar
  78. 78.
    G. Reithmaier et al., On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors. Sci. Rep. 3, 1901 (2013)CrossRefADSGoogle Scholar
  79. 79.
    F. Najafi et al., On-chip detection of non-classical light by scalable integration of single-photon detectors. Nat. Commun. 6, 5873 (2015)Google Scholar
  80. 80.
    C. Schuck et al., Optical time domain reflectometry with low noise waveguide-coupled superconducting nanowire single-photon detectors. Appl. Phys. Lett. 102, 191104 (2013)CrossRefADSGoogle Scholar
  81. 81.
    A.S. Webb et al., MCVD planar substrates for UV-written waveguide devices. Electron. Lett. 43, 517 (2007)CrossRefGoogle Scholar
  82. 82.
    D. Zauner et al., Directly UV-written silica-on-silicon planar waveguides with low insertion loss. Electron. Lett. 34, 1582 (1998)CrossRefGoogle Scholar
  83. 83.
    V. Vedral, Quantifying entanglement in macroscopic systems. Nature 453, 1004 (2008)CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Thomas Gerrits
    • 1
    Email author
  • Adriana Lita
    • 1
  • Brice Calkins
    • 1
  • Sae Woo Nam
    • 1
  1. 1.National Institute of Standards and TechnologyBoulderUSA

Personalised recommendations