Superconducting Nanowire Architectures for Single Photon Detection

  • Faraz NajafiEmail author
  • Francesco Marsili
  • Varun B. Verma
  • Qingyuan Zhao
  • Matthew D. Shaw
  • Karl K. Berggren
  • Sae Woo Nam
Part of the Quantum Science and Technology book series (QST)


Over the past decade, superconducting nanowire single photon detectors (SNSPDs) have emerged as a key enabling technology for quantum optics and free-space optical communication. We review the operating principle and the latest advances in the performance of SNSPDs, such as extending sensitivity into the mid infrared, and the adoption of amorphous superconducting films. We discuss the limits and trade-offs of the SNSPD architecture and review novel device designs, such as parallel and series nanowire detectors (PNDs and SNDs), superconducting nanowire avalanche photodetector (SNAPs), and nanowire arrays with row-column readout, which have opened the pathway to larger active area, higher speed and photon-number resolution.


Bias Current Timing Jitter Secondary Section Instrument Response Function Dark Count Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.


  1. 1.
    M.D. Eisaman, J. Fan, A. Migdall, S.V. Polyakov, Invited Review Article: Single-photon sources and detectors. Rev. Sci. Instrum. 82, 071101 (2011)CrossRefADSGoogle Scholar
  2. 2.
    C.M. Natarajan, M.G. Tanner, R.H. Hadfield, Superconducting nanowire single-photon detectors: physics and applications. Supercond. Sci. Technol. 25, 063001 (2012)CrossRefADSGoogle Scholar
  3. 3.
    G.N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, R. Sobolewski, Picosecond superconducting single-photon optical detector. Appl. Phys. Lett. 79, 705 (2001)CrossRefADSGoogle Scholar
  4. 4.
    M. Ejrnaes, R. Cristiano, O. Quaranta, S. Pagano, A. Gaggero, F. Mattioli, R. Leoni, B. Voronov, G. Gol’tsman, A cascade switching superconducting single photon detector. Appl. Phys. Lett. 91, 262509 (2007)CrossRefADSGoogle Scholar
  5. 5.
    F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R.J. Molnar, K.K. Berggren, Single-photon detectors based on ultra-narrow superconducting nanowires. Nano Lett. 11, 2048 (2011)CrossRefADSGoogle Scholar
  6. 6.
    A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. Lagoudakis, M. Benkhaoul, F. Lévy, A. Fiore, Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths. Nat. Photonics 2, 302 (2008)CrossRefGoogle Scholar
  7. 7.
    S. Jahanmirinejad, G. Frucci, F. Mattioli, D. Sahin, A. Gaggero, R. Leoni, A. Fiore, Photon-number resolving detector based on a series array of superconducting nanowires. Appl. Phys. Lett. 101, 072602 (2012)CrossRefADSGoogle Scholar
  8. 8.
    Q. Zhao, A. McCaughan, F. Bellei, F. Najafi, D. De Fazio, A. Dane, Y. Ivry, K.K. Berggren, Superconducting-nanowire single-photon-detector linear array. Appl. Phys. Lett. 103, 142602 (2013)CrossRefADSGoogle Scholar
  9. 9.
    M.S. Allman, V.B. Verma, M. Stevens, T. Gerrits, R.D. Horansky, A.E. Lita, F. Marsili, A. Beyer, M.D. Shaw, D. Kumor, R. Mirin, S.W. Nam, A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout. Appl. Phys. Lett. 106, 192601 (2015)Google Scholar
  10. 10.
    V.B. Verma, R. Horansky, F. Marsili, J.A. Stern, M.D. Shaw, A.E. Lita, R.P. Mirin, S.W. Nam, A four-pixel single-photon pulse-position array fabricated from WSi superconducting nanowire single-photon detectors. Appl. Phys. Lett. 104, 051115 (2014)CrossRefADSGoogle Scholar
  11. 11.
    J.A. Stern, W.H. Farr, Fabrication and characterization of superconducting NbN nanowire single photon detectors. IEEE Trans. Appl. Supercond. 17, 306 (2007)CrossRefADSGoogle Scholar
  12. 12.
    Y. Korneeva, I. Florya, A. Semenov, A. Korneev, G. Goltsman, New generation of nanowire NbN superconducting single-photon detector for mid-infrared. IEEE Trans. Appl. Supercond. 21, 323 (2011)CrossRefADSGoogle Scholar
  13. 13.
    F. Marsili, F. Bellei, F. Najafi, A. Dane, E.A. Dauler, R.J. Molnar, K.K. Berggren, Efficient single photon detection from 500 nanometer to 5 micron wavelength. Nano Lett. 12, 4799 (2012)CrossRefADSGoogle Scholar
  14. 14.
    A.J. Kerman, D. Rosenberg, R.J. Molnar, E.A. Dauler, Readout of superconducting nanowire single-photon detectors at high count rates. J. Appl. Phys. 113, 144511 (2013)CrossRefADSGoogle Scholar
  15. 15.
    D.M. Boroson, B.S. Robinson, D.V. Murphy, D.A. Burianek, F. Khatri, J.M. Kovalik, Z. Sodnik, D.M. Cornwell, Overview and results of the Lunar Laser Communication Demonstration. Proc. SPIE 8971, 89710S (2014)CrossRefADSGoogle Scholar
  16. 16.
    A. Biswas, J.M. Kovalik, M.W. Wright, W.T. Roberts, M.K. Cheng, K.J. Quirk, M. Srinivasan, M.D. Shaw, K.M. Birnbaum, LLCD operations using the Optical Communications Telescope Laboratory (OCTL). Proc. SPIE 8971, 89710X (2014)CrossRefADSGoogle Scholar
  17. 17.
    E. Saglamyurek, J. Jin, V.B. Verma, M.D. Shaw, F. Marsili, S.W. Nam, D. Oblak, W. Tittel, Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre. Nat. Photonics 9, 83 (2015)CrossRefADSGoogle Scholar
  18. 18.
    D.R. Hamel, L.K. Shalm, H. Hübel, A.J. Miller, F. Marsili, V.B. Verma, R.P. Mirin, S.W. Nam, K.J. Resch, T. Jennewein, Direct generation of three-photon polarization entanglement. Nat. Photonics 8, 801 (2014)CrossRefADSGoogle Scholar
  19. 19.
    F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V.B. Verma, S.W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, N. Gisin, Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory. Nat. Photonics 8, 775 (2014)Google Scholar
  20. 20.
    H. Takesue, S.W. Nam, Q. Zhang, R.H. Hadfield, T. Honjo, K. Tamaki, Y. Yamamoto, Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors. Nat. Photonics 1, 343 (2007)CrossRefADSGoogle Scholar
  21. 21.
    A. McCarthy, N.J. Krichel, N.R. Gemmell, X. Ren, M.G. Tanner, S.N. Dorenbos, V. Zwiller, R.H. Hadfield, G.S. Buller, Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection. Opt. Express 21, 8904 (2013)CrossRefADSGoogle Scholar
  22. 22.
    N.R. Gemmell, A. McCarthy, B. Liu, M.G. Tanner, S.D. Dorenbos, V. Zwiller, M.S. Patterson, G.S. Buller, B.C. Wilson, R.H. Hadfield, Singlet oxygen luminescence detection with a fiber-coupled superconducting nanowire single-photon detector. Opt. Express 21, 5005 (2013)CrossRefADSGoogle Scholar
  23. 23.
    T. Yamashita, D. Liu, S. Miki, J. Yamamoto, T. Haraguchi, M. Kinjo, Y. Hiraoka, Z. Wang, H. Terai, Fluorescence correlation spectroscopy with visible-wavelength superconducting nanowire single-photon detector. Optics Express 22, 28783 (2014)CrossRefADSGoogle Scholar
  24. 24.
    F. Marsili, V.B. Verma, J.A. Stern, S. Harrington, A.E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M.D. Shaw, R.P. Mirin, S.W. Nam, Detecting single infrared photons with 93% system efficiency. Nat. Photonics 7, 210 (2013)CrossRefADSGoogle Scholar
  25. 25.
    J.D. Cohen, S.M. Meenehan, G.S. MacCabe, S. Groblacher, A.H. Safavi-Naeini, F. Marsili, M.D. Shaw, O. Painter, Phonon counting and intensity interferometry of a nanomechanical resonator. Nature 520, 522 (2015)CrossRefADSGoogle Scholar
  26. 26.
    W.H.P. Pernice, C. Schuck, O. Minaeva, M. Li, G.N. Goltsman, A.V. Sergienko, H.X. Tang, High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nat. Commun. 3, 1325 (2012)CrossRefADSGoogle Scholar
  27. 27.
    F. Marsili, D. Bitauld, A. Fiore, A. Gaggero, F. Mattioli, R. Leoni, M. Benkahoul, F. Lévy, High efficiency NbN nanowire superconducting single photon detectors fabricated on MgO substrates from a low temperature process. Opt. Express 16, 3191 (2008)CrossRefADSGoogle Scholar
  28. 28.
    A.J. Kerman, E.A. Dauler, W.E. Keicher, J.K.W. Yang, K.K. Berggren, G. Gol’tsman, B. Voronov, Kinetic-inductance-limited reset time of superconducting nanowire photon counters. Appl. Phys. Lett. 88, 111116 (2006)CrossRefADSGoogle Scholar
  29. 29.
    S. Miki, M. Fujiwara, M. Sasaki, B. Baek, A.J. Miller, R.H. Hadfield, S.W. Nam, Z. Wang, Large sensitive-area NbN nanowire superconducting single-photon detectors fabricated on single-crystal MgO substrates. Appl. Phys. Lett. 92, 061116 (2008)CrossRefADSGoogle Scholar
  30. 30.
    M.G. Tanner, C.M. Natarajan, V.K. Pottapenjara, J.A. O’Connor, R.J. Warburton, R.H. Hadfield, B. Baek, S. Nam, S.N. Dorenbos, E.B. Urena, T. Zijlstra, T.M. Klapwijk, V. Zwiller, Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon. Appl. Phys. Lett. 96, 221109 (2010)CrossRefADSGoogle Scholar
  31. 31.
    S. Miki, T. Yamashita, H. Terai, Z. Wang, High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler. Opt. Express 21, 10208 (2013)CrossRefADSGoogle Scholar
  32. 32.
    B. Baek, A.E. Lita, V. Verma, S.W. Nam, Superconducting a-W\(_{x}\)Si\(_{1 - x}\) nanowire single-photon detector with saturated internal quantum efficiency from visible to 1850 nm. Appl. Phys. Lett. 98, 251105 (2011)CrossRefADSGoogle Scholar
  33. 33.
    A. Engel, A. Aeschbacher, K. Inderbitzin, A. Schilling, K. Il’in, M. Hofherr, M. Siegel, A. Semenov, H.W. Hubers, Tantalum nitride superconducting single-photon detectors with low cut-off energy. Appl. Phys. Lett. 100, 062601 (2012)CrossRefADSGoogle Scholar
  34. 34.
    Y.P. Korneeva, M.Y. Mikhailov, Y.P. Pershin, N.N. Manova, A.V. Divochiy, Y.B. Vakhtomin, A.A. Korneev, K.V. Smirnov, A.G. Sivakov, A.Y. Devizenko, G.N. Goltsman, Superconducting single-photon detector made of MoSi film. Supercond. Sci. Technol. 27, 095012 (2014)CrossRefADSGoogle Scholar
  35. 35.
    V.B. Verma, B. Korzh, F. Bussières, R.D. Horansky, S.D. Dyer, A.E. Lita, I. Vayshenker, F. Marsili, M.D. Shaw, H. Zbinden, R.P. Mirin, S.W. Nam, High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films (2015). arXiv:1504.02793
  36. 36.
    V.B. Verma, A.E. Lita, M.R. Vissers, F. Marsili, D.P. Pappas, R.P. Mirin, S.W. Nam, Superconducting nanowire single photon detectors fabricated from an amorphous Mo\(_{0.75}\)Ge\(_{0.25}\) thin film. Appl. Phys. Lett. 105, 022602 (2014)CrossRefADSGoogle Scholar
  37. 37.
    S.N. Dorenbos, P. Forn-Diaz, T. Fuse, A.H. Verbruggen, T. Zijlstra, T.M. Klapwijk, V. Zwiller, Low gap superconducting single photon detectors for infrared sensitivity. Appl. Phys. Lett. 98, 251102 (2011)CrossRefADSGoogle Scholar
  38. 38.
    H. Shibata, Fabrication of a MgB\(_{2}\) nanowire single-photon detector using Br\(_{2}\) -N\(_{2}\) dry etching. Appl. Phys. Ex. 7, 103101 (2014)CrossRefADSGoogle Scholar
  39. 39.
    H. Shibata, T. Akazaki, Y. Tokura, Fabrication of MgB\(_{2}\) nanowire single-photon detector with meander structure. Appl. Phys. Express 6, 023101 (2013)CrossRefADSGoogle Scholar
  40. 40.
    A.E. Lita, A.J. Miller, S.W. Nam, Counting near-infrared single-photons with 95% efficiency. Opt. Express 16, 3032 (2008)CrossRefADSGoogle Scholar
  41. 41.
    A.D. Semenov, G.N. Gol’tsman, A.A. Korneev, Quantum detection by current carrying superconducting film. Physica C 351, 349 (2001)CrossRefADSGoogle Scholar
  42. 42.
    A. Semenov, A. Engel, H.W. Hübers, K. Il’in, M. Siegel, Spectral cut-off in the efficiency of the resistive state formation caused by absorption of a single-photon in current-carrying superconducting nano-strips. Eur. Phys. J. B 47, 495 (2005)CrossRefADSGoogle Scholar
  43. 43.
    A.D. Semenov, P. Haas, H.W. Hübers, K. Ilin, M. Siegel, A. Kirste, T. Schurig, A. Engel, Vortex-based single-photon response in nanostructured superconducting detectors. Physica C 468, 627 (2008)CrossRefADSGoogle Scholar
  44. 44.
    L.N. Bulaevskii, M.J. Graf, V.G. Kogan, Vortex-assisted photon counts and their magnetic field dependence in single-photon superconducting detectors. Phys. Rev. B 85, 014505 (2012)CrossRefADSGoogle Scholar
  45. 45.
    J.J. Renema, R. Gaudio, Q. Wang, Z. Zhou, A. Gaggero, F. Mattioli, R. Leoni, D. Sahin, M.J.A. de Dood, A. Fiore, M.P. van Exter, Experimental Test of Theories of the Detection Mechanism in a Nanowire Superconducting Single Photon Detector. Phys. Rev. Lett. 112, 117604 (2014)CrossRefADSGoogle Scholar
  46. 46.
    J.K.W. Yang, A.J. Kerman, E.A. Dauler, V. Anant, K.M. Rosfjord, K.K. Berggren, Modeling the electrical and thermal response of superconducting nanowire single-photon detectors. IEEE Trans. Appl. Supercond. 17, 581 (2007)CrossRefADSGoogle Scholar
  47. 47.
    E.A. Dauler, M.E. Grein, A.J. Kerman, F. Marsili, S. Miki, S.W. Nam, M.D. Shaw, H. Terai, V.B. Verma, T. Yamashita, Review of superconducting nanowire single-photon detector system design options and demonstrated performance. Opt. Eng. 53, 081907 (2014)CrossRefADSGoogle Scholar
  48. 48.
    A.J. Kerman, E.A. Dauler, J.K.W. Yang, K.M. Rosfjord, V. Anant, K.K. Berggren, G.N. Gol’tsman, B.M. Voronov, Constriction-limited detection efficiency of superconducting nanowire single-photon detectors. Appl. Phys. Lett. 90, 101110 (2007)CrossRefADSGoogle Scholar
  49. 49.
    A.J. Kerman, J.K.W. Yang, R.J. Molnar, E.A. Dauler, K.K. Berggren, Electrothermal feedback in superconducting nanowire single-photon detectors. Phys. Rev. B 79, 100509 (2009)CrossRefADSGoogle Scholar
  50. 50.
    F. Marsili, F. Najafi, C. Herder, K.K. Berggren, Electrothermal simulation of superconducting nanowire avalanche photodetectors. Appl. Phys. Lett. 98, 093507 (2011)CrossRefADSGoogle Scholar
  51. 51.
    V.B. Verma, F. Marsili, S. Harrington, A.E. Lita, R.P. Mirin, S.W. Nam, A three-dimensional, polarization-insensitive superconducting nanowire avalanche photodetector. Appl. Phys. Lett. 101, 251114 (2012)CrossRefADSGoogle Scholar
  52. 52.
    F. Marsili, V. Verma, M.J. Stevens, J.A. Stern, M.D. Shaw, A. Miller, D. Schwarzer, A. Wodtke, R.P. Mirin, S.W. Nam, Mid-Infrared Single-Photon Detection with Tungsten Silicide Superconducting Nanowires, CLEO: 2013 (Optical Society of America, California, 2013), p. CTu1H.1Google Scholar
  53. 53.
    F. Najafi, A. Dane, F. Bellei, Q. Zhao, K.A. Sunter, A.N. McCaughan, K.K. Berggren, Fabrication Process Yielding Saturated Nanowire Single-Photon Detectors With 24-ps Jitter. IEEE Journal of Selected Topics in Quantum Electronics 21, 3800507 (2015)Google Scholar
  54. 54.
    F. Najafi, F. Marsili, E. Dauler, A.J. Kerman, R.J. Molnar, K.K. Berggren, Timing performance of 30-nm-wide superconducting nanowire avalanche photodetectors. Appl. Phys. Lett. 100, 152602 (2012)CrossRefADSGoogle Scholar
  55. 55.
    F. Marsili, F. Najafi, E. Dauler, R.J. Molnar, K.K. Berggren, Afterpulsing and instability in superconducting nanowire avalanche photodetectors. Appl. Phys. Lett. 100, 112601 (2012)CrossRefADSGoogle Scholar
  56. 56.
    V. Anant, A.J. Kerman, E.A. Dauler, J.K.W. Yang, K.M. Rosfjord, K.K. Berggren, Optical properties of superconducting nanowire single-photon detectors. Opt. Express 16, 10750 (2008)CrossRefADSGoogle Scholar
  57. 57.
    F. Najafi, J. Mower, N.C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K.K. Berggren, D. Englund, On-chip detection of non-classical light by scalable integration of single-photon detectors. Nat. Commun. 6, 5873 (2015)CrossRefADSGoogle Scholar
  58. 58.
    Q. Zhao, A.N. McCaughan, A.E. Dane, F. Najafi, F. Bellei, D. De Fazio, K.A. Sunter, Y. Ivry, K.K. Berggren, Eight-fold signal amplification of a superconducting nanowire single-photon detector using a multiple-avalanche architecture. Opt. Express 22, 24574 (2014)CrossRefADSGoogle Scholar
  59. 59.
    E.A. Dauler, A.J. Kerman, B.S. Robinson, J.K.W. Yang, B. Voronov, G. Goltsman, S.A. Hamilton, K.K. Berggren, Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors. J. Mod. Opt. 56, 364 (2009)CrossRefADSGoogle Scholar
  60. 60.
    M.J. Stevens, B. Baek, E.A. Dauler, A.J. Kerman, R.J. Molnar, S.A. Hamilton, K.K. Berggren, R.P. Mirin, S.W. Nam, High-order temporal coherences ofchaotic and laser light. Opt. Express 18, 1430 (2010)CrossRefADSGoogle Scholar
  61. 61.
    F. Marsili, D. Bitauld, A. Fiore, A. Gaggero, R. Leoni, F. Mattioli, A. Divochiy, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, Superconducting parallel nanowire detector with photon number resolving functionality. J. Mod. Opt. 56, 334 (2009)CrossRefADSGoogle Scholar
  62. 62.
    F. Marsili, D. Bitauld, A. Gaggero, S. Jahanmirinejad, R. Leoni, F. Mattioli, A. Fiore, Physics and application of photon number resolving detectors based on superconducting parallel nanowires. New J. Phys. 11, 045022 (2009)CrossRefADSGoogle Scholar
  63. 63.
    Z. Zhou, S. Jahanmirinejad, F. Mattioli, D. Sahin, G. Frucci, A. Gaggero, R. Leoni, A. Fiore, Superconducting series nanowire detector counting up to twelve photons. Opt. Express 22, 3475 (2014)CrossRefADSGoogle Scholar
  64. 64.
    S. Jahanmirinejad, A. Fiore, Proposal for a superconducting photon number resolving detector with large dynamic range. Optics Express 20, 5017 (2012)CrossRefADSGoogle Scholar
  65. 65.
    P.K. Day, H.G. LeDuc, B.A. Mazin, A. Vayonakis, J. Zmuidzinas, A broadband superconducting detector suitable for use in large arrays. Nature 425, 817 (2003)CrossRefADSGoogle Scholar
  66. 66.
    S. Miki, T. Yamashita, Z. Wang, H. Terai, A 64-pixel NbTiN superconducting nanowire single-photon detector array for spatially resolved photon detection. Opt. Express 22, 7811 (2014)CrossRefADSGoogle Scholar
  67. 67.
    D. Rosenberg, A.J. Kerman, R.J. Molnar, E.A. Dauler, High-speed and high-efficiency superconducting nanowire single photon detector array. Opt. Express 21, 1440 (2013)CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Faraz Najafi
    • 1
    Email author
  • Francesco Marsili
    • 2
  • Varun B. Verma
    • 3
  • Qingyuan Zhao
    • 1
  • Matthew D. Shaw
    • 2
  • Karl K. Berggren
    • 1
  • Sae Woo Nam
    • 3
  1. 1.Department of Electrical Engineering and Computer ScienceMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  3. 3.National Institute of Standards and TechnologyBoulderUSA

Personalised recommendations