Skip to main content

OCT in Amblyopia

  • Chapter
  • First Online:
OCT in Central Nervous System Diseases

Abstract

The purpose of the study is to analyze the advantages of optical coherence tomography (OCT) to detect retinal nerve fiber layer (RNFL) thickness abnormalities and changes in the macula in amblyopic patients. Studies were selected through an electronic search on PUBMED, EMBASE and GOOGLE SCHOLAR using the following terms: “Optical coherence tomography in amblyopia”, “OCT and amblyopia”, “Optical coherence tomography and anisometropic amblyopia”, “Optical coherence tomography and strabismic amblyopia”.

We found that optical coherence tomography is a rapid, non-invasive imaging technique allowing objective quantification of retinal structures with high resolution; it can be successfully applied to young children, even those who are neurologically disabled or less cooperative. New generations devices, such as spectral domain OCT, have led to a dramatic increase in sensitivity that enables high-speed imaging. OCT technology could be also an useful biomarker for evaluating progressive thinning of RNFL over time and changes in the macula in amblyopia. Evidence for direct retinal changes in eyes with amblyopia has been controversial, so that further studies with large sample are required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McKee SP, Levi DM, Movshon JA. The pattern of visual deficits in amblyopia. J Vis. 2003;3(5):380–405.

    Article  PubMed  Google Scholar 

  2. Crawford ML, Harwerth RS, Smith EL, von Noorden GK. Keeping an eye on the brain: the role of visual experience in monkeys and children. J Gen Psychol. 1993;120(1):7–19.

    Article  CAS  PubMed  Google Scholar 

  3. Holmes JM, Clarke MP. Amblyopia. Lancet. 2006;367(9519):1343–51.

    Article  PubMed  Google Scholar 

  4. Donahue SP, Arnold RW, Ruben JB. Preschool vision screening: what should we be detecting and how should we report it? Uniform guidelines for reporting results of preschool vision screening studies. J AAPOS. 2003;7(5):314–6.

    Article  PubMed  Google Scholar 

  5. Arnold RW. Amblyopia risk factor prevalence. J Pediatr Ophthalmol Strabismus. 2013;50(4):213–7.

    Article  PubMed  Google Scholar 

  6. Attebo K, Mitchell P, Cumming R, Smith W, Jolly N, Sparkes R. Prevalence and causes of amblyopia in an adult population. Ophthalmology. 1998;105(1):154–9.

    Article  CAS  PubMed  Google Scholar 

  7. Ederer F, Krueger DE. Report on the National Eye Institute’s Visual Acuity Impairment Survey Pilot Study. Washington, DC: Office of Biometry and Epidemiology/National Eye Institute/National Institutes of Health/Public Health Service/Department of Health and Human Services; 1984. p. 81–4.

    Google Scholar 

  8. Holmes JM, Beck RW, Repka MX, Leske DA, Kraker RT, Blair RC, et al. The amblyopia treatment study visual acuity testing protocol. Arch Ophthalmol. 2001;119(9):1345–53.

    Article  CAS  PubMed  Google Scholar 

  9. Wiesel TN, Hubel DH. Single- cell responses in striate cortex of kittens deprived of vision in one eye. J Neurophysiol. 1963;26:1003–17.

    CAS  PubMed  Google Scholar 

  10. Williams C, Papakostopoulos D. Electro-oculographic abnormalities in amblyopia. Br J Ophthalmol. 1995;79(3):218–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Von Noorden GK, Crawford ML. The lateral geniculate nucleus in human strabismic amblyopia. Invest Ophthalmol Vis Sci. 1992;33(9):2729–32.

    Google Scholar 

  12. Horton JC, Hocking DR. Timing of the critical period for plasticity of ocular dominance columns in macaque striate cortex. J Neurosci. 1997;17(10):3684–709.

    CAS  PubMed  Google Scholar 

  13. Dickmann A, Petroni S, Perrotta V, Parrilla R, Aliberti S, Salerni A, et al. Measurement of retinal nerve fiber layer thickness, macular thickness, and foveal volume in amblyopic eyes using spectral-domain optical coherence tomography. J AAPOS. 2012;16(1):86–8.

    Article  PubMed  Google Scholar 

  14. Repka MX, Kraker RT, Tamkins SM, Suh DW, Sala NA, Beck RW. Retinal nerve fiber layer thickness in amblyopic eyes. Am J Ophthalmol. 2009;148(1):143–7.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Huynh SC, Samarawickrama C, Wang XY, Rochtchina E, Wong TY, Gole GA, et al. Macular and nerve fiber layer thickness in amblyopia: the Sydney Childhood Eye Study. Ophthalmology. 2009;116(9):1604–9.

    Article  PubMed  Google Scholar 

  16. Khan AO. A comparison between the amblyopic eye and normal fellow eye ocular architecture in children with hyperopic anisometropic amblyopia. J AAPOS. 2013;17(1):115–6.

    Article  PubMed  Google Scholar 

  17. Wu SQ, Zhu LW, Xu QB, Xu JL, Zhang Y. Macular and peripapillary retinal nerve fiber layer thickness in children with hyperopic anisometropic amblyopia. Int J Ophthalmol. 2013;6(1):85–9.

    PubMed  PubMed Central  Google Scholar 

  18. Provis JM, van Driel D, Billson FA, Russell P. Development of the human retina: patterns of cell distribution and redistribution in the ganglion cell layer. J Comp Neurol. 1985;233(4):429–51.

    Article  CAS  PubMed  Google Scholar 

  19. Provis JM, van Driel D, Billson FA, Russell P. Human fetal optic nerve: overproduction and elimination of retinal axons during development. J Comp Neurol. 1985;238(1):92–100.

    Article  CAS  PubMed  Google Scholar 

  20. Yen MY, Cheng CY, Wang AG. Retinal nerve fiber layer thickness in unilateral amblyopia. Invest Ophthalmol Vis Sci. 2004;45(7):2224–30.

    Article  PubMed  Google Scholar 

  21. Kok PH, de Kinkelder R, Braaksma-Besselink YC, Kalkman J, Prick LJ, Sminia ML, et al. Anomalous relation between axial length and retinal thickness in amblyopic children. J AAPOS. 2013;17(6):598–602.

    Article  PubMed  Google Scholar 

  22. Pang Y, Goodfellow GW, Allison C, Block S, Frantz KA. A prospective study of macular thickness in amblyopic children with unilateral high myopia. Invest Ophthalmol Vis Sci. 2011;52(5):2444–9.

    Article  PubMed  Google Scholar 

  23. Kutschke PJ, Scott WE, Keech RV. Anisometropic amblyopia. Ophthalmology. 1991;98(2):258–63.

    Article  CAS  PubMed  Google Scholar 

  24. Nucci P, Drack AV. Refractive surgery for unilateral high myopia in children. J AAPOS. 2001;5(6):348–51.

    Article  CAS  PubMed  Google Scholar 

  25. Saw SM, Gazzard G, Shih-Yen EC, Chua WH. Myopia and associated pathological complications. Ophthalmic Physiol Opt. 2005;25(5):381–91.

    Article  PubMed  Google Scholar 

  26. Dickmann A, Petroni S, Salerni A, Dell’Omo R, Balestrazzi E. Unilateral amblyopia: an optical coherence tomography study. J AAPOS. 2009;13(2):148–50.

    Article  PubMed  Google Scholar 

  27. Dickmann A, Petroni S, Perrotta V, Salerni A, Parrilla R, Aliberti S, et al. A morpho functional study of amblyopic eyes with the use of optical coherence tomography and microperimetry. J AAPOS. 2011;15(4):338–41.

    Article  PubMed  Google Scholar 

  28. Szigeti A, Tátrai E, Szamosi A, Vargha P, Nagy ZZ, Németh J, et al. A morphological study of retinal changes in unilateral amblyopia using optical coherence tomography image segmentation. PLoS One. 2014;9(2), e88363.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Enoch JM. Receptor amblyopia. Am J Ophthalmol. 1959;48(3), Part 2:262–74.

    Google Scholar 

  30. Delint PJ, Weissenbruch C, Berendschot TT, Norren DV. Photoreceptor function in unilateral amblyopia. Vision Res. 1998;38(4):613–7.

    Article  CAS  PubMed  Google Scholar 

  31. Kim YW, Kim SJ, Yu YS. Spectral-domain optical coherence tomography analysis in deprivational amblyopia: a pilot study with unilateral pediatric cataract patients. Graefes Arch Clin Exp Ophthalmol. 2013;251(12):2811–9.

    Article  PubMed  Google Scholar 

  32. Bowering ER, Maurer D, Lewis TL, Brent HP. Sensitivity in the nasal and temporal hemifields in children treated for cataract. Invest Ophthalmol Vis Sci. 1993;34(13):3501–9.

    CAS  PubMed  Google Scholar 

  33. Kanamori A, Naka M, Nagai-Kusuhara A, Yamada Y, Nakamura M, Negi A. Regional relationship between retinal nerve fiber layer thickness and corresponding visual field sensitivity in glaucomatous eyes. Arch Ophthalmol. 2008;126(11):1500–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Nucci MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nucci, P., Lembo, A., Castellucci, G., Pichi, F. (2016). OCT in Amblyopia. In: Grzybowski, A., Barboni, P. (eds) OCT in Central Nervous System Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-24085-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24085-5_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24083-1

  • Online ISBN: 978-3-319-24085-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics