Malfunction Immune Wi–Fi Localisation Method

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9329)


Indoor localisation systems based on a Wi–Fi local area wireless technology bring constantly improving results. However, the whole localisation system may fail when one or more Access Point (AP) malfunctions. In this paper we present how to limit the number of observed APs and how to create a malfunction immune localisation method. The presented solutions are an ensemble of random forests with an additional malfunction detection system. The proposed solution reduces a growth of the localisation error to 4 percent for the floor detection inside a six floor building and 2 metres for the horizontal detection in case of a gross malfunction of an AP infrastructure. The system without proposed improvements may give the errors greater than 30 percent and 7 metres respectively in case of not detected changes in the AP’s infrastructure.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)CrossRefMATHGoogle Scholar
  2. 2.
    Grzenda, M.: On the prediction of floor identification credibility in RSS-based positioning techniques. In: Ali, M., Bosse, T., Hindriks, K.V., Hoogendoorn, M., Jonker, C.M., Treur, J. (eds.) IEA/AIE 2013. LNCS, vol. 7906, pp. 610–619. Springer, Heidelberg (2013). CrossRefGoogle Scholar
  3. 3.
    Karwowski, J., Okulewicz, M., Legierski, J.: Application of particle swarm optimization algorithm to neural network training process in the localization of the mobile terminal. In: Iliadis, L., Papadopoulos, H., Jayne, C. (eds.) EANN 2013, Part I. CCIS, vol. 383, pp. 122–131. Springer, Heidelberg (2013). CrossRefGoogle Scholar
  4. 4.
    Korbel, P., Wawrzyniak, P., Grabowski, S., Krasinska, D.: Locfusion api - programming interface for accurate multi-source mobile terminal positioning. In: 2013 Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 819–823, September 2013Google Scholar
  5. 5.
    Papapostolou, A., Chaouchi, H.: Scene analysis indoor positioning enhancements. Annales des Télécommunications 66, 519–533 (2011)CrossRefGoogle Scholar
  6. 6.
    Roos, T., Myllymaki, P., Tirri, H., Misikangas, P., Sievanen, J.: A probabilistic approach to wlan user location estimation. International Journal of Wireless Information Networks 9(3), 155–164 (2002)CrossRefGoogle Scholar
  7. 7.
    Wang, J., Hu, A., Liu, C., Li, X.: A floor-map-aided wifi/pseudo-odometry integration algorithm for an indoor positioning system. Sensors 15(4), 7096 (2015). CrossRefGoogle Scholar
  8. 8.
    Xiang, Z., Song, S., Chen, J., Wang, H., Huang, J., Gao, X.G.: A wireless lan-based indoor positioning technology. IBM Journal of Research and Development 48(5–6), 617–626 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Faculty of Mathematics and Information ScienceWarsaw University of TechnologyWarszawaPoland

Personalised recommendations