Post-operative Management

  • Sing-Pey Chow
  • D. Frank P. LarkinEmail author


Corneal transplantation has been successfully performed for over 100 years. Despite HLA typing and systemic immunosuppression not being routinely undertaken, 5-year survival rates exceed 90 % in corneal grafts with no current or past history of inflammation. However, graft survival decreases dramatically in the presence of risk factors that place it at high rejection risk, and immunological graft rejection remains the leading cause for graft failure. Post-operative management of corneal grafts requires stratification according to the risk for rejection and addressing this with appropriate prophylaxis. It is critically important to recognise corneal graft rejection early and initiate appropriate treatment, as a delay in diagnosis and treatment will result in failure to reverse rejection, or at least shorter graft survival if rejection is reversed.


Graft rejection Rejection prophylaxis Post-operative care Systemic immunosuppression 


  1. 1.
    Niederkorn JY, Larkin DF. Immune privilege of corneal allografts. Ocul Immunol Inflamm. 2010;18(3):162–71.PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Coster D, Jessup CF, Williams K. Mechanisms of corneal allograft rejection and the development of new therapies. In: Reinhard T, Larkin DF, editors. Corneal allotransplantation, allergic disease and trachoma. Berlin: Springer; 2010. p. 163.Google Scholar
  3. 3.
    Bill A. The blood-aqueous barrier. Trans Ophthalmol Soc U K. 1986;105(Pt 2):149–55.PubMedGoogle Scholar
  4. 4.
    Niederkorn JY. Immune privilege in the anterior chamber of the eye. Crit Rev Immunol. 2002;22(1):13–46.CrossRefPubMedGoogle Scholar
  5. 5.
    Streilein JW, Niederkorn JY. Induction of anterior chamber-associated immune deviation requires an intact, functional spleen. J Exp Med. 1981;153(5):1058–67.CrossRefPubMedGoogle Scholar
  6. 6.
    Griffith TS, Brunner T, Fletcher SM, Green DR, Ferguson TA. Fas ligand-induced apoptosis as a mechanism of immune privilege. Science. 1995;270(5239):1189–92.CrossRefPubMedGoogle Scholar
  7. 7.
    Hori J, Wang M, Miyashita M, Tanemoto K, Takahashi H, Takemori T, et al. B7-H1-induced apoptosis as a mechanism of immune privilege of corneal allografts. J Immunol. 2006;177(9):5928–35.CrossRefPubMedGoogle Scholar
  8. 8.
    Shen L, Jin Y, Freeman GJ, Sharpe AH, Dana MR. The function of donor versus recipient programmed death-ligand 1 in corneal allograft survival. J Immunol. 2007;179(6):3672–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Goslings WR, Prodeus AP, Streilein JW, Carroll MC, Jager MJ, Taylor AW. A small molecular weight factor in aqueous humor acts on C1q to prevent antibody-dependent complement activation. Invest Ophthalmol Vis Sci. 1998;39(6):989–95.PubMedGoogle Scholar
  10. 10.
    Bora NS, Gobleman CL, Atkinson JP, Pepose JS, Kaplan HJ. Differential expression of the complement regulatory proteins in the human eye. Invest Ophthalmol Vis Sci. 1993;34(13):3579–84.PubMedGoogle Scholar
  11. 11.
    Whitsett CF, Stulting RD. The distribution of HLA antigens on human corneal tissue. Invest Ophthalmol Vis Sci. 1984;25(5):519–24.PubMedGoogle Scholar
  12. 12.
    Apte RS, Mayhew E, Niederkorn JY. Local inhibition of natural killer cell activity promotes the progressive growth of intraocular tumors. Invest Ophthalmol Vis Sci. 1997;38(6):1277–82.PubMedGoogle Scholar
  13. 13.
    Apte RS, Niederkorn JY. Isolation and characterization of a unique natural killer cell inhibitory factor present in the anterior chamber of the eye. J Immunol. 1996;156(8):2667–73.PubMedGoogle Scholar
  14. 14.
    Apte RS, Sinha D, Mayhew E, Wistow GJ, Niederkorn JY. Cutting edge: role of macrophage migration inhibitory factor in inhibiting NK cell activity and preserving immune privilege. J Immunol. 1998;160(12):5693–6.PubMedGoogle Scholar
  15. 15.
    Rook AH, Kehrl JH, Wakefield LM, Roberts AB, Sporn MB, Burlington DB, et al. Effects of transforming growth factor beta on the functions of natural killer cells: depressed cytolytic activity and blunting of interferon responsiveness. J Immunol. 1986;136(10):3916–20.PubMedGoogle Scholar
  16. 16.
    Williams KA, Lowe MT, Keane MC, Jones VJ, Loh RS, Coster DJ. The Australian corneal graft registry 2012 report. Adelaide: Snap Printing; 2012.Google Scholar
  17. 17.
    Arentsen JJ. Corneal transplant allograft reaction: possible predisposing factors. Trans Am Ophthalmol Soc. 1983;81:361–402.PubMedCentralPubMedGoogle Scholar
  18. 18.
    Maguire MG, Stark WJ, Gottsch JD, Stulting RD, Sugar A, Fink NE, et al. Risk factors for corneal graft failure and rejection in the collaborative corneal transplantation studies. Collaborative Corneal Transplantation Studies Research Group. Ophthalmology. 1994;101(9):1536–47.CrossRefPubMedGoogle Scholar
  19. 19.
    Volker-Dieben HJ, D’Amaro J, Kok-van Alphen CC. Hierarchy of prognostic factors for corneal allograft survival. Aust N Z J Ophthalmol. 1987;15(1):11–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Williams KA, White MA, Ash JK, Coster DJ. Leukocytes in the graft bed associated with corneal graft failure. Analysis by immunohistology and actuarial graft survival. Ophthalmology. 1989;96(1):38–44.CrossRefPubMedGoogle Scholar
  21. 21.
    Williams KA, Esterman AJ, Bartlett C, Holland H, Hornsby NB, Coster DJ. How effective is penetrating corneal transplantation? Factors influencing long-term outcome in multivariate analysis. Transplantation. 2006;81(6):896–901.CrossRefPubMedGoogle Scholar
  22. 22.
    Coster DJ, Williams KA. The impact of corneal allograft rejection on the long-term outcome of corneal transplantation. Am J Ophthalmol. 2005;140(6):1112–22.CrossRefPubMedGoogle Scholar
  23. 23.
    Thompson Jr RW, Price MO, Bowers PJ, Price Jr FW. Long-term graft survival after penetrating keratoplasty. Ophthalmology. 2003;110(7):1396–402.CrossRefPubMedGoogle Scholar
  24. 24.
    Dietrich T, Bock F, Yuen D, Hos D, Bachmann BO, Zahn G, et al. Cutting edge: lymphatic vessels, not blood vessels, primarily mediate immune rejections after transplantation. J Immunol. 2010;184(2):535–9.PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Boisjoly HM, Tourigny R, Bazin R, Laughrea PA, Dube I, Chamberland G, et al. Risk factors of corneal graft failure. Ophthalmology. 1993;100(11):1728–35.CrossRefPubMedGoogle Scholar
  26. 26.
    Williams KA, Roder D, Esterman A, Muehlberg SM, Coster DJ. Factors predictive of corneal graft survival. Report from the Australian Corneal Graft Registry. Ophthalmology. 1992;99(3):403–14.CrossRefPubMedGoogle Scholar
  27. 27.
    Reinhard T, Moller M, Sundmacher R. Penetrating keratoplasty in patients with atopic dermatitis with and without systemic cyclosporin A. Cornea. 1999;18(6):645–51.CrossRefPubMedGoogle Scholar
  28. 28.
    Beauregard C, Stevens C, Mayhew E, Niederkorn JY. Cutting edge: atopy promotes Th2 responses to alloantigens and increases the incidence and tempo of corneal allograft rejection. J Immunol. 2005;174(11):6577–81.CrossRefPubMedGoogle Scholar
  29. 29.
    Kuchle M, Cursiefen C, Nguyen NX, Langenbucher A, Seitz B, Wenkel H, et al. Risk factors for corneal allograft rejection: intermediate results of a prospective normal-risk keratoplasty study. Graefes Arch Clin Exp Ophthalmol. 2002;240(7):580–4.CrossRefPubMedGoogle Scholar
  30. 30.
    Nguyen NX, Martus P, Seitz B, Cursiefen C. Atopic dermatitis as a risk factor for graft rejection following normal-risk keratoplasty. Graefes Arch Clin Exp Ophthalmol. 2009;247(4):573–4.CrossRefPubMedGoogle Scholar
  31. 31.
    Niederkorn JY, Chen PW, Mellon J, Stevens C, Mayhew E. Allergic airway hyperreactivity increases the risk for corneal allograft rejection. Am J Transplant. 2009;9(5):1017–26.PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Flynn TH, Ohbayashi M, Ikeda Y, Ono SJ, Larkin DF. Effect of allergic conjunctival inflammation on the allogeneic response to donor cornea. Invest Ophthalmol Vis Sci. 2007;48(9):4044–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Jonas JB, Rank RM, Budde WM. Immunologic graft reactions after allogenic penetrating keratoplasty. Am J Ophthalmol. 2002;133(4):437–43.CrossRefPubMedGoogle Scholar
  34. 34.
    Paufique L, Sourdille GD, Offret G. Les Greffes de la Cornee. 27. Paris: Masson et Cie; 1948. p. 131–6.Google Scholar
  35. 35.
    Khodadoust AA, Silverstein AM. Transplantation and rejection of individual cell layers of the cornea. Invest Ophthalmol. 1969;8(2):180–95.PubMedGoogle Scholar
  36. 36.
    Chan CM, Wong TY, Yeong SM, Lim TH, Tan DT. Penetrating keratoplasty in the Singapore National Eye Centre and donor cornea acquisition in the Singapore Eye Bank. Ann Acad Med Singapore. 1997;26(4):395–400.PubMedGoogle Scholar
  37. 37.
    Adler H, Beland JL, Kozlow W, Del-Pan NC, Kobzik L, Rimm IJ. A role for transforming growth factor-beta1 in the increased pneumonitis in murine allogeneic bone marrow transplant recipients with graft-versus-host disease after pulmonary herpes simplex virus type 1 infection. Blood. 1998;92(7):2581–9.PubMedGoogle Scholar
  38. 38.
    Alldredge OC, Krachmer JH. Clinical types of corneal transplant rejection. Their manifestations, frequency, preoperative correlates, and treatment. Arch Ophthalmol. 1981;99(4):599–604.CrossRefPubMedGoogle Scholar
  39. 39.
    Krachmer JH, Alldredge OC. Subepithelial infiltrates: a probable sign of corneal transplant rejection. Arch Ophthalmol. 1978;96(12):2234–7.CrossRefPubMedGoogle Scholar
  40. 40.
    Slegers TPAM, Daly MK, Larkin DF. Corneal transplant rejection. In: Reinhard T, Larkin DF, editors. Essentials in ophthalmology: cornea and external eye disease. New York: Springer; 2006.Google Scholar
  41. 41.
    Larkin DF. Corneal allograft rejection. Br J Ophthalmol. 1994;78(8):649–52.PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Claerhout I, Beele H, De Bacquer D, Kestelyn P. Factors influencing the decline in endothelial cell density after corneal allograft rejection. Invest Ophthalmol Vis Sci. 2003;44(11):4747–52.CrossRefPubMedGoogle Scholar
  43. 43.
    Naacke HG, Borderie VM, Bourcier T, Touzeau O, Moldovan M, Laroche L. Outcome of corneal transplantation rejection. Cornea. 2001;20(4):350–3.CrossRefPubMedGoogle Scholar
  44. 44.
    McDonnell PJ, Enger C, Stark WJ, Stulting RD. Corneal thickness changes after high-risk penetrating keratoplasty. Collaborative Corneal Transplantation Study Group. Arch Ophthalmol. 1993;111(10):1374–81.CrossRefPubMedGoogle Scholar
  45. 45.
    Hill JC, Maske R, Watson P. Corticosteroids in corneal graft rejection. Oral versus single pulse therapy. Ophthalmology. 1991;98(3):329–33.CrossRefPubMedGoogle Scholar
  46. 46.
    Hill JC, Ivey A. Corticosteroids in corneal graft rejection: double versus single pulse therapy. Cornea. 1994;13(5):383–8.CrossRefPubMedGoogle Scholar
  47. 47.
    Hudde T, Minassian DC, Larkin DF. Randomised controlled trial of corticosteroid regimens in endothelial corneal allograft rejection. Br J Ophthalmol. 1999;83(12):1348–52.PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Costa DC, de Castro RS, Kara-Jose N. Case–control study of subconjunctival triamcinolone acetonide injection vs intravenous methylprednisolone pulse in the treatment of endothelial corneal allograft rejection. Eye (Lond). 2009;23(3):708–14.CrossRefGoogle Scholar
  49. 49.
    Poon A, Constantinou M, Lamoureux E, Taylor HR. Topical Cyclosporin A in the treatment of acute graft rejection: a randomized controlled trial. Clin Experiment Ophthalmol. 2008;36(5):415–21.PubMedGoogle Scholar
  50. 50.
    Zhao JC, Jin XY. Local therapy of corneal allograft rejection with cyclosporine. Am J Ophthalmol. 1995;119(2):189–94.CrossRefPubMedGoogle Scholar
  51. 51.
    Young AL, Rao SK, Cheng LL, Wong AK, Leung AT, Lam DS. Combined intravenous pulse methylprednisolone and oral cyclosporine A in the treatment of corneal graft rejection: 5-year experience. Eye (Lond). 2002;16(3):304–8.CrossRefGoogle Scholar
  52. 52.
    Koay PY, Lee WH, Figueiredo FC. Opinions on risk factors and management of corneal graft rejection in the United kingdom. Cornea. 2005;24(3):292–6.CrossRefPubMedGoogle Scholar
  53. 53.
    Rinne JR, Stulting RD. Current practices in the prevention and treatment of corneal graft rejection. Cornea. 1992;11(4):326–8.CrossRefPubMedGoogle Scholar
  54. 54.
    Randleman JB, Stulting RD. Prevention and treatment of corneal graft rejection: current practice patterns (2004). Cornea. 2006;25(3):286–90.CrossRefPubMedGoogle Scholar
  55. 55.
    Price Jr FW, Price DA, Ngakeng V, Price MO. Survey of steroid usage patterns during and after low-risk penetrating keratoplasty. Cornea. 2009;28(8):865–70.CrossRefPubMedGoogle Scholar
  56. 56.
    Nguyen NX, Seitz B, Martus P, Langenbucher A, Cursiefen C. Long-term topical steroid treatment improves graft survival following normal-risk penetrating keratoplasty. Am J Ophthalmol. 2007;144(2):318–9.CrossRefPubMedGoogle Scholar
  57. 57.
    Price MO, Price Jr FW. Efficacy of topical cyclosporine 0.05% for prevention of cornea transplant rejection episodes. Ophthalmology. 2006;113(10):1785–90.CrossRefPubMedGoogle Scholar
  58. 58.
    Egan RM, Yorkey C, Black R, Loh WK, Stevens JL, Woodward JG. Peptide-specific T cell clonal expansion in vivo following immunization in the eye, an immune-privileged site. J Immunol. 1996;157(6):2262–71.PubMedGoogle Scholar
  59. 59.
    Okada K, Mishima HK, Kawano MM, Mizote H, Minamoto A. Involvement of CD8+ RT1.B+ and CD4+ RT1.B+ cells of cervical lymph nodes in the immune response after corneal transplantation in the rat. Jpn J Ophthalmol. 1997;41(4):209–16.CrossRefPubMedGoogle Scholar
  60. 60.
    Yamagami S, Dana MR. The critical role of lymph nodes in corneal alloimmunization and graft rejection. Invest Ophthalmol Vis Sci. 2001;42(6):1293–8.PubMedGoogle Scholar
  61. 61.
    Chatel MA, Larkin DF. Sirolimus and mycophenolate as combination prophylaxis in corneal transplant recipients at high rejection risk. Am J Ophthalmol. 2010;150(2):179–84.CrossRefPubMedGoogle Scholar
  62. 62.
    Flynn TH, Mitchison NA, Ono SJ, Larkin DF. Aqueous humor alloreactive cell phenotypes, cytokines and chemokines in corneal allograft rejection. Am J Transplant. 2008;8(7):1537–43.CrossRefPubMedGoogle Scholar
  63. 63.
    Hill JC. Systemic cyclosporine in high-risk keratoplasty: long-term results. Eye (Lond). 1995;9(Pt 4):422–8.Google Scholar
  64. 64.
    Reinhard T, Reis A, Bohringer D, Malinowski M, Voiculescu A, Heering P, et al. Systemic mycophenolate mofetil in comparison with systemic cyclosporin A in high-risk keratoplasty patients: 3 years’ results of a randomized prospective clinical trial. Graefes Arch Clin Exp Ophthalmol. 2001;239(5):367–72.CrossRefPubMedGoogle Scholar
  65. 65.
    Poon AC, Forbes JE, Dart JK, Subramaniam S, Bunce C, Madison P, et al. Systemic cyclosporin A in high risk penetrating keratoplasties: a case–control study. Br J Ophthalmol. 2001;85(12):1464–9.PubMedCentralCrossRefPubMedGoogle Scholar
  66. 66.
    Rumelt S, Bersudsky V, Blum-Hareuveni T, Rehany U. Systemic cyclosporin A in high failure risk, repeated corneal transplantation. Br J Ophthalmol. 2002;86(9):988–92.PubMedCentralCrossRefPubMedGoogle Scholar
  67. 67.
    Reinhard T, Mayweg S, Sokolovska Y, Seitz B, Mittelviefhaus H, Engelmann K, et al. Systemic mycophenolate mofetil avoids immune reactions in penetrating high-risk keratoplasty: preliminary results of an ongoing prospectively randomized multicentre study. Transplant Int. 2005;18(6):703–8.CrossRefGoogle Scholar
  68. 68.
    Hill JC. Systemic cyclosporine in high-risk keratoplasty. Short- versus long-term therapy. Ophthalmology. 1994;101(1):128–33.CrossRefPubMedGoogle Scholar
  69. 69.
    Sinha R, Jhanji V, Verma K, Sharma N, Biswas NR, Vajpayee RB. Efficacy of topical cyclosporine A 2% in prevention of graft rejection in high-risk keratoplasty: a randomized controlled trial. Graefes Arch Clin Exp Ophthalmol. 2010;248(8):1167–72.CrossRefPubMedGoogle Scholar
  70. 70.
    Inoue K, Amano S, Kimura C, Sato T, Fujita N, Kagaya F, et al. Long-term effects of topical cyclosporine A treatment after penetrating keratoplasty. Jpn J Ophthalmol. 2000;44(3):302–5.CrossRefPubMedGoogle Scholar
  71. 71.
    Cosar CB, Laibson PR, Cohen EJ, Rapuano CJ. Topical cyclosporine in pediatric keratoplasty. Eye Contact Lens. 2003;29(2):103–7.CrossRefPubMedGoogle Scholar
  72. 72.
    Belin MW, Bouchard CS, Frantz S, Chmielinska J. Topical cyclosporine in high-risk corneal transplants. Ophthalmology. 1989;96(8):1144–50.CrossRefPubMedGoogle Scholar
  73. 73.
    Knoll GA, Bell RC. Tacrolimus versus cyclosporin for immunosuppression in renal transplantation: meta-analysis of randomised trials. BMJ. 1999;318(7191):1104–7.PubMedCentralCrossRefPubMedGoogle Scholar
  74. 74.
    Mills RA, Jones DB, Winkler CR, Wallace GW, Wilhelmus KR. Topical FK-506 prevents experimental corneal allograft rejection. Cornea. 1995;14(2):157–60.CrossRefPubMedGoogle Scholar
  75. 75.
    Dhaliwal JS, Mason BF, Kaufman SC. Long-term use of topical tacrolimus (FK506) in high-risk penetrating keratoplasty. Cornea. 2008;27(4):488–93.CrossRefPubMedGoogle Scholar
  76. 76.
    Sloper CM, Powell RJ, Dua HS. Tacrolimus (FK506) in the management of high-risk corneal and limbal grafts. Ophthalmology. 2001;108(10):1838–44.CrossRefPubMedGoogle Scholar
  77. 77.
    Joseph A, Raj D, Shanmuganathan V, Powell RJ, Dua HS. Tacrolimus immunosuppression in high-risk corneal grafts. Br J Ophthalmol. 2007;91(1):51–5.PubMedCentralCrossRefPubMedGoogle Scholar
  78. 78.
    Yamazoe K, Yamaguchi T, Omoto M, Shimazaki J. Efficacy and safety of systemic tacrolimus in high-risk penetrating keratoplasty after graft failure with systemic cyclosporine. Cornea. 2014;33(11):1157–63.CrossRefPubMedGoogle Scholar
  79. 79.
    Kobashigawa J, Miller L, Renlund D, Mentzer R, Alderman E, Bourge R, et al. A randomized active-controlled trial of mycophenolate mofetil in heart transplant recipients. Mycophenolate Mofetil Investigators. Transplantation. 1998;66(4):507–15.CrossRefPubMedGoogle Scholar
  80. 80.
    Halloran P, Mathew T, Tomlanovich S, Groth C, Hooftman L, Barker C. Mycophenolate mofetil in renal allograft recipients: a pooled efficacy analysis of three randomized, double-blind, clinical studies in prevention of rejection. The International Mycophenolate Mofetil Renal Transplant Study Groups. Transplantation. 1997;63(1):39–47.CrossRefPubMedGoogle Scholar
  81. 81.
    Mycophenolate mofetil in renal transplantation: 3-year results from the placebo-controlled trial. European Mycophenolate Mofetil Cooperative Study Group. Transplantation. 1999;68(3):391–6.Google Scholar
  82. 82.
    A blinded, randomized clinical trial of mycophenolate mofetil for the prevention of acute rejection in cadaveric renal transplantation. The Tricontinental Mycophenolate Mofetil Renal Transplantation Study Group. Transplantation. 1996;61(7):1029–37.Google Scholar
  83. 83.
    Wiesner R, Rabkin J, Klintmalm G, McDiarmid S, Langnas A, Punch J, et al. A randomized double-blind comparative study of mycophenolate mofetil and azathioprine in combination with cyclosporine and corticosteroids in primary liver transplant recipients. Liver Transplant. 2001;7(5):442–50.CrossRefGoogle Scholar
  84. 84.
    Birnbaum F, Mayweg S, Reis A, Bohringer D, Seitz B, Engelmann K, et al. Mycophenolate mofetil (MMF) following penetrating high-risk keratoplasty: long-term results of a prospective, randomised, multicentre study. Eye (Lond). 2009;23(11):2063–70.CrossRefGoogle Scholar
  85. 85.
    Birnbaum F, Bohringer D, Sokolovska Y, Sundmacher R, Reinhard T. Immunosuppression with cyclosporine A and mycophenolate mofetil after penetrating high-risk keratoplasty: a retrospective study. Transplantation. 2005;79(8):964–8.CrossRefPubMedGoogle Scholar
  86. 86.
    Birnbaum F, Reis A, Bohringer D, Sokolowska Y, Mayer K, Voiculescu A, et al. An open prospective pilot study on the use of rapamycin after penetrating high-risk keratoplasty. Transplantation. 2006;81(5):767–72.CrossRefPubMedGoogle Scholar
  87. 87.
    Mitry D, Bhogal M, Patel AK, Lee BS, Chai SM, Price MO, et al. Descemet stripping automated endothelial keratoplasty after failed penetrating keratoplasty: survival, rejection risk, and visual outcome. JAMA Ophthalmol. 2014;132(6):742–9.CrossRefPubMedGoogle Scholar
  88. 88.
    Price Jr FW, Price MO, Arundhati A. Descemet stripping automated endothelial keratoplasty under failed penetrating keratoplasty: how to avoid complications. Am J Ophthalmol. 2011;151(2):187–8.e2.CrossRefPubMedGoogle Scholar
  89. 89.
    Heitor de Paula F, Kamyar R, Shtein RM, Sugar A, Mian SI. Endothelial keratoplasty without Descemet stripping after failed penetrating keratoplasty. Cornea. 2012;31(6):645–8.CrossRefPubMedGoogle Scholar
  90. 90.
    Nottage JM, Nirankari VS. Endothelial keratoplasty without Descemet’s stripping in eyes with previous penetrating corneal transplants. Br J Ophthalmol. 2012;96(1):24–7.CrossRefPubMedGoogle Scholar
  91. 91.
    Anshu A, Price MO, Price Jr FW. Descemet’s stripping endothelial keratoplasty under failed penetrating keratoplasty: visual rehabilitation and graft survival rate. Ophthalmology. 2011;118(11):2155–60.CrossRefPubMedGoogle Scholar
  92. 92.
    Bersudsky V, Blum-Hareuveni T, Rehany U, Rumelt S. The profile of repeated corneal transplantation. Ophthalmology. 2001;108(3):461–9.CrossRefPubMedGoogle Scholar
  93. 93.
    Chaurasia S, Murthy S, Ramappa M, Mohamed A, Garg P. Outcomes of Descemet’s stripping endothelial keratoplasty in eyes with failed therapeutic penetrating keratoplasty. Acta Ophthalmol. 2014;92(2):167–70.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Cornea and External Diseases ServiceMoorfields Eye HospitalLondonUK

Personalised recommendations