Technology: Femtosecond Laser in Keratoplasty



Femtosecond lasers offer a controlled, precise means of disrupting clear ocular tissue, facilitating full thickness and lamellar corneal transplantation. This provides an opportunity to create reproducible and accurate incisional depths, lamellar stromal beds, and potentially the ability to follow the curvature of the cornea. The femtosecond laser has been employed in penetrating, anterior lamellar and endothelial keratoplasty. To date, the greatest promise has been demonstrated in the ability to create improved wound configurations with faster recovery and reduced astigmatism. Final visual outcomes are currently comparable to conventional surgery for femto-assisted penetrating keratoplasty (PK). For both Femto-PK and deep anterior lamellar keratoplasty (DALK), there is evidence of a faster rate of astigmatic correction and visual recovery, in part because of novel interfaces and the ability to remove sutures earlier. The technology appears to be safe with regard to corneal endothelial cell preservation in PK and DALK, but the exact limits of trephination remain to be determined. The promise with endothelial keratoplasty (EK) however is currently limited by concerns regarding the effects on the endothelium and stromal bed smoothness and there is little long-term data on corneal graft rejection. At present, a major barrier to its wider application is cost, the nature of the applanation device and optimization of the imaging systems that will facilitate real-time enhancement of lamellar trephination. Although this technology is relatively new, its full potential has yet to be realized.


Femtosecond Femto- Laser Keratoplasty Transplantation 


  1. 1.
    Almousa R, Samaras KE, khan S, lake DB, Daya SM. Femtosecond laser-assisted lamellar keratoplasty (FSLK) for anterior corneal stromal diseases. Int Ophthalmol. 2014;34:49–58.CrossRefPubMedGoogle Scholar
  2. 2.
    Ang M, Tan D, Mehta JS. Small incision lenticule extraction (SMILE) versus laser in-situ keratomileusis (LASIK): study protocol for a randomized, non-inferiority trial. Trials. 2012;13:75.PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Angunawela RI, Riau A, Chaurasia SS, Tan DT, Mehta JS. Manual suction versus femtosecond laser trephination for penetrating keratoplasty: intraocular pressure, endothelial cell damage, incision geometry, and wound healing responses. Invest Ophthalmol Vis Sci. 2012;53:2571–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Anwar M, Teichmann KD. Big-bubble technique to bare Descemet’s membrane in anterior lamellar keratoplasty. J Cataract Refract Surg. 2002;28:398–403.CrossRefPubMedGoogle Scholar
  5. 5.
    Ardjomand N, Hau S, Mcalister JC, Bunce C, Galaretta D, Tuft SJ, Larkin DF. Quality of vision and graft thickness in deep anterior lamellar and penetrating corneal allografts. Am J Ophthalmol. 2007;143:228–35.CrossRefPubMedGoogle Scholar
  6. 6.
    Bahar I, Kaiserman I, Lange AP, Levinger E, Sansanayudh W, Singal N, Slomovic AR, Rootman DS. Femtosecond laser versus manual dissection for top hat penetrating keratoplasty. Br J Ophthalmol. 2009;93:73–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Birnbaum F, Wiggermann A, Maier PC, Bohringer D, Reinhard T. Clinical results of 123 femtosecond laser-assisted penetrating keratoplasties. Graefes Arch Clin Exp Ophthalmol. 2013;251:95–103.CrossRefPubMedGoogle Scholar
  8. 8.
    Bonfadini G, Moreira H, Jun AS, Campos M, Kim EC, Arana E, Zapparoli M, Ribas Filho JM, Mcdonnell PJ. Modified femtosecond laser-assisted sutureless anterior lamellar keratoplasty. Cornea. 2013;32:533–7.CrossRefPubMedGoogle Scholar
  9. 9.
    Busin M, Madi S, Santorum P, Scorcia V, Beltz J. Ultrathin descemet’s stripping automated endothelial keratoplasty with the microkeratome double-pass technique: two-year outcomes. Ophthalmology. 2013;120:1186–94.CrossRefPubMedGoogle Scholar
  10. 10.
    Buzzonetti L, Capozzi P, Petrocelli G, Valente P, Petroni S, Menabuoni L, Rossi F, Pini R. Laser welding in penetrating keratoplasty and cataract surgery in pediatric patients: early results. J Cataract Refract Surg. 2013;39:1829–34.CrossRefPubMedGoogle Scholar
  11. 11.
    Buzzonetti L, Laborante A, Petrocelli G. Standardized big-bubble technique in deep anterior lamellar keratoplasty assisted by the femtosecond laser. J Cataract Refract Surg. 2010;36:1631–6.CrossRefPubMedGoogle Scholar
  12. 12.
    Buzzonetti L, Laborante A, Petrocelli G. Refractive outcome of keratoconus treated by combined femtosecond laser and big-bubble deep anterior lamellar keratoplasty. J Refract Surg. 2011;27:189–94.PubMedGoogle Scholar
  13. 13.
    Chamberlain WD, Rush SW, Mathers WD, Cabezas M, Fraunfelder FW. Comparison of femtosecond laser-assisted keratoplasty versus conventional penetrating keratoplasty. Ophthalmology. 2011;118:486–91.CrossRefPubMedGoogle Scholar
  14. 14.
    Chan CC, Ritenour RJ, Kumar NL, Sansanayudh W, Rootman DS. Femtosecond laser-assisted mushroom configuration deep anterior lamellar keratoplasty. Cornea. 2010;29:290–5.CrossRefPubMedGoogle Scholar
  15. 15.
    Chaurasia SS, Luengo Gimeno F, Tan K, Yu S, Tan DT, Beuerman RW, Mehta JS. In vivo real-time intraocular pressure variations during LASIK flap creation. Invest Ophthalmol Vis Sci. 2010;51:4641–5.CrossRefPubMedGoogle Scholar
  16. 16.
    Cheng YY, Hendrikse F, Pels E, Wijdh RJ, van Cleynenbreugel H, Eggink CA, van Rij G, Rijneveld WJ, Nuijts RM. Preliminary results of femtosecond laser-assisted descemet stripping endothelial keratoplasty. Arch Ophthalmol. 2008;126:1351–6.CrossRefPubMedGoogle Scholar
  17. 17.
    Cheng YY, Kang SJ, Grossniklaus HE, Pels E, Duimel HJ, Frederik PM, Hendrikse F, Nuijts RM. Histologic evaluation of human posterior lamellar discs for femtosecond laser Descemet’s stripping endothelial keratoplasty. Cornea. 2009;28:73–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Cheng YY, Schouten JS, Tahzib NG, Wijdh RJ, Pels E, van Cleynenbreugel H, Eggink CA, Rijneveld WJ, Nuijts RM. Efficacy and safety of femtosecond laser-assisted corneal endothelial keratoplasty: a randomized multicenter clinical trial. Transplantation. 2009;88:1294–302.CrossRefPubMedGoogle Scholar
  19. 19.
    Cheng YY, Tahzib NG, van Rij G, van Cleynenbreugel H, Pels E, Hendrikse F, Nuijts R. Femtosecond laser-assisted inverted mushroom keratoplasty. Cornea. 2008;27:679–85.PubMedGoogle Scholar
  20. 20.
    Cheng YY, van den Berg TJ, Schouten JS, Pels E, Wijdh RJ, van Cleynenbreugel H, Eggink CA, Rijneveld WJ, Nuijts RM. Quality of vision after femtosecond laser-assisted descemet stripping endothelial keratoplasty and penetrating keratoplasty: a randomized, multicenter clinical trial. Am J Ophthalmol. 2011;152:556–66.e1.CrossRefPubMedGoogle Scholar
  21. 21.
    Coster DJ, Lowe MT, Keane MC, Williams KA, Australian Corneal Graft Registry Contributors. A comparison of lamellar and penetrating keratoplasty outcomes: a registry study. Ophthalmology. 2014;121:979–87.CrossRefPubMedGoogle Scholar
  22. 22.
    de Benito-Llopis L, Mehta JS, Angunawela RI, Ang M, Tan DT. Intraoperative anterior segment optical coherence tomography: a novel assessment tool during deep anterior lamellar keratoplasty. Am J Ophthalmol. 2014;157:334–41.e3.CrossRefPubMedGoogle Scholar
  23. 23.
    Farid M, Kim M, Steinert RF. Results of penetrating keratoplasty performed with a femtosecond laser zigzag incision initial report. Ophthalmology. 2007;114:2208–12.CrossRefPubMedGoogle Scholar
  24. 24.
    Farid M, Steinert RF. Deep anterior lamellar keratoplasty performed with the femtosecond laser zigzag incision for the treatment of stromal corneal pathology and ectatic disease. J Cataract Refract Surg. 2009;35:809–13.CrossRefPubMedGoogle Scholar
  25. 25.
    Farid M, Steinert RF, Gaster RN, Chamberlain W, Lin A. Comparison of penetrating keratoplasty performed with a femtosecond laser zig-zag incision versus conventional blade trephination. Ophthalmology. 2009;116:1638–43.CrossRefPubMedGoogle Scholar
  26. 26.
    Fung SS, Iovieno A, Shanmuganathan VA, Chowdhury V, Maurino V. Femtosecond laser-assisted lock-and-key shaped penetrating keratoplasty. Br J Ophthalmol. 2012;96:136–7.CrossRefPubMedGoogle Scholar
  27. 27.
    Gaster RN, Dumitrascu O, Rabinowitz YS. Penetrating keratoplasty using femtosecond laser-enabled keratoplasty with zig-zag incisions versus a mechanical trephine in patients with keratoconus. Br J Ophthalmol. 2012;96:1195–9.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Heinzelmann S, Maier P, Bohringer D, Auw-Hadrich C, Reinhard T. Visual outcome and histological findings following femtosecond laser-assisted versus microkeratome-assisted DSAEK. Graefes Arch Clin Exp Ophthalmol. 2013;251:1979–85.CrossRefPubMedGoogle Scholar
  29. 29.
    Hjortdal J, Nielsen E, Vestergaard A, Sondergaard A. Inverse cutting of posterior lamellar corneal grafts by a femtosecond laser. Open Ophthalmol J. 2012;6:19–22.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Hoffart L, Proust H, Matonti F, Conrath J, Ridings B. Correction of postkeratoplasty astigmatism by femtosecond laser compared with mechanized astigmatic keratotomy. Am J Ophthalmol. 2009;147:779–87, 787.e1.CrossRefPubMedGoogle Scholar
  31. 31.
    Jones MN, Armitage WJ, Ayliffe W, Larkin DF, Kaye SB, NHSBT Ocular Tissue Advisory Group and Contributing Ophthalmologists (OTAG Audit Study 5). Penetrating and deep anterior lamellar keratoplasty for keratoconus: a comparison of graft outcomes in the United kingdom. Invest Ophthalmol Vis Sci. 2009;50:5625–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Jones YJ, Goins KM, Sutphin JE, Mullins R, Skeie JM. Comparison of the femtosecond laser (IntraLase) versus manual microkeratome (Moria ALTK) in dissection of the donor in endothelial keratoplasty: initial study in eye bank eyes. Cornea. 2008;27:88–93.CrossRefPubMedGoogle Scholar
  33. 33.
    Kamiya K, Kobashi H, Shimizu K, Igarashi A. Clinical outcomes of penetrating keratoplasty performed with the VisuMax femtosecond laser system and comparison with conventional penetrating keratoplasty. PLoS One. 2015;9(8):e105464.Google Scholar
  34. 34.
    Klingler KN, Mclaren JW, Bourne WM, patel s V. Corneal endothelial cell changes 5 years after laser in situ keratomileusis: femtosecond laser versus mechanical microkeratome. J Cataract Refract Surg. 2012;38:2125–30.PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Koo TS, Finkelstein E, Tan D, Mehta JS. Incremental cost-utility analysis of deep anterior lamellar keratoplasty compared with penetrating keratoplasty for the treatment of keratoconus. Am J Ophthalmol. 2011;152:40–7.e2.CrossRefPubMedGoogle Scholar
  36. 36.
    Kopani KR, Page MA, Holiman J, Parodi A, Iliakis B, Chamberlain W. Femtosecond laser-assisted keratoplasty: full and partial-thickness cut wound strength and endothelial cell loss across a variety of wound patterns. Br J Ophthalmol. 2014;98:894–9.CrossRefPubMedGoogle Scholar
  37. 37.
    Krueger RR, Marchi V, Gualano A, Juhasz T, Speaker M, Suarez C. Clinical analysis of the neodymium:YLF picosecond laser as a microkeratome for laser in situ keratomileusis. Partially sighted eye study. J Cataract Refract Surg. 1998;24:1434–40.CrossRefPubMedGoogle Scholar
  38. 38.
    Kurtz RM, Horvath C, Liu HH, Krueger RR, Juhasz T. Lamellar refractive surgery with scanned intrastromal picosecond and femtosecond laser pulses in animal eyes. J Refract Surg. 1998;14:541–8.PubMedGoogle Scholar
  39. 39.
    Lee J, Winokur J, Hallak J, Azar DT. Femtosecond dovetail penetrating keratoplasty: surgical technique and case report. Br J Ophthalmol. 2009;93:861–3.CrossRefPubMedGoogle Scholar
  40. 40.
    Levinger E, Trivizki O, Levinger S, Kremer I. Outcome of “mushroom” pattern femtosecond laser-assisted keratoplasty versus conventional penetrating keratoplasty in patients with keratoconus. Cornea. 2014;33:481–5.CrossRefPubMedGoogle Scholar
  41. 41.
    Liu T, Zhang J, Sun D, Sui W, Zhang Y, Li D, Chen Z, Gao H. Comparative study of corneal endothelial cell damage after femtosecond laser assisted deep stromal dissection. Biomed Res Int. 2014;2014:731565.PubMedCentralPubMedGoogle Scholar
  42. 42.
    Maier P, Bohringer D, Birnbaum F, Reinhard T. Improved wound stability of top-hat profiled femtosecond laser-assisted penetrating keratoplasty in vitro. Cornea. 2012;31:963–6.CrossRefPubMedGoogle Scholar
  43. 43.
    Mehta JS, Parthasarthy A, Por YM, Cajucom-Uy H, Beuerman RW, Tan D. Femtosecond laser-assisted endothelial keratoplasty: a laboratory model. Cornea. 2008;27:706–12.CrossRefPubMedGoogle Scholar
  44. 44.
    Mehta JS, Shilbayeh R, POR YM, Cajucom-Uy H, Beuerman RW, Tan DT. Femtosecond laser creation of donor cornea buttons for Descemet-stripping endothelial keratoplasty. J Cataract Refract Surg. 2008;34:1970–5.CrossRefPubMedGoogle Scholar
  45. 45.
    Mootha VV, Heck E, Verity SM, Petroll WM, Lakshman N, Muftuoglu O, Bowman RW, Mcculley JP, Cavanagh HD. Comparative study of descemet stripping automated endothelial keratoplasty donor preparation by Moria CBm microkeratome, horizon microkeratome, and intralase FS60. Cornea. 2011;30:320–4.PubMedCentralPubMedGoogle Scholar
  46. 46.
    Price Jr FW, Price MO. Femtosecond laser shaped penetrating keratoplasty: one-year results utilizing a top-hat configuration. Am J Ophthalmol. 2008;145:210–4.CrossRefPubMedGoogle Scholar
  47. 47.
    Price Jr FW, Price MO, Grandin JC, Kwon R. Deep anterior lamellar keratoplasty with femtosecond-laser zigzag incisions. J Cataract Refract Surg. 2009;35:804–8.CrossRefPubMedGoogle Scholar
  48. 48.
    Price FW, Price MO, Jordan CS. Safety of incomplete incision patterns in femtosecond laser-assisted penetrating keratoplasty. J Cataract Refract Surg. 2008;34:2099–103.CrossRefPubMedGoogle Scholar
  49. 49.
    Proust H, Baeteman C, Matonti F, Conrath J, Ridings B, Hoffart L. Femtosecond laser-assisted decagonal penetrating keratoplasty. Am J Ophthalmol. 2011;151:29–34.CrossRefPubMedGoogle Scholar
  50. 50.
    Reinhart WJ, Musch DC, Jacobs DS, Lee WB, Kaufman SC, Shtein RM. Deep anterior lamellar keratoplasty as an alternative to penetrating keratoplasty a report by the american academy of ophthalmology. Ophthalmology. 2011;118:209–18.CrossRefPubMedGoogle Scholar
  51. 51.
    Riau AK, Angunawela RI, Chaurasia SS, Tan DT, Mehta JS. Effect of different femtosecond laser-firing patterns on collagen disruption during refractive lenticule extraction. J Cataract Refract Surg. 2012;38:1467–75.CrossRefPubMedGoogle Scholar
  52. 52.
    Riau AK, Liu YC, Lwin NC, Ang HP, Tan NY, Yam GH, Tan DT, Mehta JS. Comparative study of nJ- and muJ-energy level femtosecond lasers: evaluation of flap adhesion strength, stromal bed quality, and tissue responses. Invest Ophthalmol Vis Sci. 2014;55:3186–94.CrossRefPubMedGoogle Scholar
  53. 53.
    Riau AK, Poh R, Pickard DS, Park CH, Chaurasia SS, Mehta JS. Nanoscale helium ion microscopic analysis of collagen fibrillar changes following femtosecond laser dissection of human cornea. J Biomed Nanotechnol. 2014;10:1552–62.CrossRefPubMedGoogle Scholar
  54. 54.
    Rosa AM, Silva MF, Quadrado MJ, Costa E, Marques I, Murta JN. Femtosecond laser and microkeratome-assisted Descemet stripping endothelial keratoplasty: first clinical results. Br J Ophthalmol. 2013;97:1104–7.CrossRefPubMedGoogle Scholar
  55. 55.
    Shehadeh-Mashor R, Chan CC, Bahar I, Lichtinger A, Yeung SN, Rootman DS. Comparison between femtosecond laser mushroom configuration and manual trephine straight-edge configuration deep anterior lamellar keratoplasty. Br J Ophthalmol. 2014;98:35–9.CrossRefPubMedGoogle Scholar
  56. 56.
    Shousha MA, Yoo SH, Kymionis GD, Ide T, Feuer W, Karp CL, O’brien TP, Culbertson WW, Alfonso E. Long-term results of femtosecond laser-assisted sutureless anterior lamellar keratoplasty. Ophthalmology. 2011;118:315–23.CrossRefPubMedGoogle Scholar
  57. 57.
    Soong HK, Malta JB. Femtosecond lasers in ophthalmology. Am J Ophthalmol. 2009;147:189–97.e2.CrossRefPubMedGoogle Scholar
  58. 58.
    Steinert RF, Ignacio TS, Sarayba MA. “Top hat”-shaped penetrating keratoplasty using the femtosecond laser. Am J Ophthalmol. 2007;143:689–91.CrossRefPubMedGoogle Scholar
  59. 59.
    Stern D, Schoenlein RW, Puliafito CA, Dobi ET, Birngruber R, Fujimoto JG. Corneal ablation by nanosecond, picosecond, and femtosecond lasers at 532 and 625 nm. Arch Ophthalmol. 1989;107:587–92.CrossRefPubMedGoogle Scholar
  60. 60.
    Tan DT, Dart JK, Holland EJ, Kinoshita S. Corneal transplantation. Lancet. 2012;379:1749–61.CrossRefPubMedGoogle Scholar
  61. 61.
    Trikha S, Turnbull AM, Morris RJ, Anderson DF, Hossain P. The journey to femtosecond laser-assisted cataract surgery: new beginnings or a false dawn? Eye (Lond). 2013;27:461–73.CrossRefGoogle Scholar
  62. 62.
    van den Biggelaar FJ, Cheng YY, Nuijts RM, Schouten JS, Wijdh RJ, Pels E, van Cleynenbreugel H, Eggink CA, Rijneveld WJ, Dirksen CD. Economic evaluation of endothelial keratoplasty techniques and penetrating keratoplasty in the Netherlands. Am J Ophthalmol. 2012;154:272–81.e2.CrossRefPubMedGoogle Scholar
  63. 63.
    van den Biggelaar FJ, Cheng YY, Nuijts RM, Schouten JS, Wijdh RJ, Pels E, van Cleynenbreugel H, Eggink CA, Zaal MJ, Rijneveld WJ, Dirksen CD. Economic evaluation of deep anterior lamellar keratoplasty versus penetrating keratoplasty in The Netherlands. Am J Ophthalmol. 2011;151:449–59.e2.CrossRefPubMedGoogle Scholar
  64. 64.
    Vetter JM, Faust M, Gericke A, Pfeiffer N, Weingartner WE, Sekundo W. Intraocular pressure measurements during flap preparation using 2 femtosecond lasers and 1 microkeratome in human donor eyes. J Cataract Refract Surg. 2012;38:2011–8.CrossRefPubMedGoogle Scholar
  65. 65.
    Vetter JM, Holzer MP, Teping C, Weingartner WE, Gericke A, Stoffelns B, Pfeiffer N, Sekundo W. Intraocular pressure during corneal flap preparation: comparison among four femtosecond lasers in porcine eyes. J Refract Surg. 2011;27:427–33.CrossRefPubMedGoogle Scholar
  66. 66.
    Vetter JM, Schirra A, Garcia-Bardon D, Lorenz K, Weingartner WE, Sekundo W. Comparison of intraocular pressure during corneal flap preparation between a femtosecond laser and a mechanical microkeratome in porcine eyes. Cornea. 2011;30:1150–4.CrossRefPubMedGoogle Scholar
  67. 67.
    Yoo SH, Kymionis GD, Koreishi A, Ide T, Goldman D, Karp CL, O’brien TP, Culbertson WW, Alfonso EC. Femtosecond laser-assisted sutureless anterior lamellar keratoplasty. Ophthalmology. 2008;115:1303–7, 1307.e1.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Corneal and External Eye Disease ServiceSingapore National Eye CentreSingaporeSingapore

Personalised recommendations