Skip to main content

Revelations on the Regulatory Mechanisms in Moth Sex-Pheromone Signals

  • Chapter
  • First Online:
Book cover Management of Insect Pests to Agriculture
  • 1292 Accesses

Abstract

The understanding of chemical communication in Lepidoptera, particularly in moths, has advanced greatly over the last half-century including sex-pheromone identification and synthesis, but the application of this knowledge in pest management has had only marginal success, possibly due to the complexity of the biosynthetic cascades that result in the production of the pheromone components. Sexual encounters in moths are initiated by the release of a unique blend of volatile organic compounds, the sex pheromones, by one sex, to attract conspecifics and signal receptivity for mating. After mating, pheromone biosynthetic activity in females is reduced, calling behavior ceases and oviposition is enhanced. Both post-mating responses i.e. reduced receptivity and increased oviposition, can be theoretically visualized as systems that could be manipulated to the advantage for pest management. This review examines the research trend concerning mating behavior in moths by appraising the available information revealed by molecular, genomic, phylogenetic and transcriptomic studies on the mechanisms that up-regulate sex-pheromone production in receptive females and down-regulate after mating. The review concludes by examining future research directions needed to enhance our present-day knowledge concerning these regulatory mechanisms so as to reach a level of understanding that will facilitate its utilization for pest management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abad, J. L., Camps, F., & Fabriàs, G. (2001). Stereospecificity of the (Z)-9 desaturase that converts (E)-11-tetradecenoic acid into (Z, E)-9,11-tetradecadienoic acid in the biosynthesis of spodoptera littoralis sex pheromone. Insect Biochemistry and Molecular Biology, 31, 799–803.

    Article  CAS  PubMed  Google Scholar 

  • Aigaki, T., Fleischmann, I., Chen, P. S., & Kubli, E. (1991). Ectopic expression of sex peptide alters reproductive behavior of female D. melanogaster. Neuron, 7, 557–563.

    Article  CAS  PubMed  Google Scholar 

  • Birch, M. C. (Ed.). (1974). Pheromones (pp. 115–134). Amsterdam: North-Holland Pub. Co.

    Google Scholar 

  • Bjostad, L. B., Wolf, W., & Roelofs, W. L. (1987). Pheromone biochemistry (G. J. Blomquist & G. D. Prestwich, Eds.) (pp. 77–120). New York: Academic.

    Google Scholar 

  • Bloch, G., Hazan, E., & Rafaeli, A. (2013). Circadian rhythms and endocrine functions in adult insects. Journal of Insect Physiology, 59, 56–69.

    Article  CAS  PubMed  Google Scholar 

  • Bober, R., & Rafaeli, A. (2009). Pheromone Biosynthesis Activating Neuropeptide (PBAN) and its G-protein coupled receptor. In M. Krishnan & K. Chandrasekar (Eds.), Short views on insect molecular biology (chap. 7, pp. 131–145). South India: International Book Mission, Academic Publisher.

    Google Scholar 

  • Bober, R., & Rafaeli, A. (2010). Gene-silencing reveals the functional significance of pheromone biosynthesis activating neuropeptide receptor (PBAN-R) in a male moth. Proceedings of the National Academy of Sciences of the United States of America, 107, 16858–16862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bober, R., Azrielli, A., & Rafaeli, A. (2010). Developmental regulation of the Pheromone Biosynthesis Activating Neuropeptide-Receptor (PBAN-R): Re-evaluating the role of juvenile hormone. Insect Molecular Biology, 19, 77–86.

    Article  CAS  PubMed  Google Scholar 

  • Chapman, T., Bangham, J., Vinti, G., Seifried, B., Lung, O., Wolfner, M. F., Smith, H. K., & Partridge, L. (2003). The sex peptide of Drosophila melanogaster: Female post-mating responses analyzed by using RNA interference. Proceedings of the National Academy of Sciences of the United States of America, 100, 9923–9928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, P. S., Stumm-Zollinger, E., Aigaki, T., Balmer, J., Bienz, M., & Böhlen, P. (1988). A male accessory gland peptide that regulates reproductive behavior of female D. melanogaster. Cell, 54, 291–298.

    Article  CAS  PubMed  Google Scholar 

  • Choi, M. Y., Fuerst, E. J., Rafaeli, A., & Jurenka, R. A. (2003). Identification of a pheromone biosynthesis-activating neuropeptide G protein-coupled receptor in pheromone glands of Helicoverpa zea. Proceedings of the National Academy of Sciences of the United States of America, 100, 9721–9726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delisle, J., Picimbon, J. F., & Simard, J. (2000). Regulation of pheromone inhibition in mated females of Choristoneura fumiferana and C. rosaceana. Journal of Insect Physiology, 46, 913–921.

    Article  CAS  PubMed  Google Scholar 

  • Eliyahu, D., Applebaum, S. W., & Rafaeli, A. (2003). Moth sex-pheromone biosynthesis is inhibited by the herbicide diclofop. Pesticide Biochemistry and Physiology, 77, 75–81.

    Article  CAS  Google Scholar 

  • Enserink, M. (2010). GM mosquito trial strains ties in gates-funded project. Science, 330, 1030–1031.

    Article  CAS  PubMed  Google Scholar 

  • Fabrias, G., Marco, M. P., & Camps, F. (1994). Effect of the pheromone biosynthesis activating neuropeptide on sex pheromone biosynthesis in Spodoptera littoralis isolated glands. Advances Insect Biochemistry and Physiology, 27, 77–87.

    Article  CAS  Google Scholar 

  • Fan, Y., Rafaeli, A., Gileadi, C., Kubli, E., & Applebaum, S. W. (1999). Drosophila melanogaster sex peptide stimulates JH-synthesis and depresses sex pheromone production in Helicoverpa armigera. Journal of Insect Physiology, 45, 127–133.

    Article  CAS  PubMed  Google Scholar 

  • Fan, Y., Rafaeli, A., Moshitzky, P., Kubli, E., Choffat, Y., & Applebaum, S. W. (2000). Common functional elements of Drosophila melanogaster-seminal peptides involved in reproduction of Drosophila melanogaster and Helicoverpa armigera. Insect Biochemistry and Molecular Biology, 30, 805–812.

    Article  CAS  PubMed  Google Scholar 

  • Gillott, C. (2003). Male accessory gland secretions: Modulators of female reproductive physiology and behavior. Annual Review of Entomology, 48, 163–184.

    Article  CAS  PubMed  Google Scholar 

  • Gu, S.-H., Wu, K.-M., Guo, Y.-Y., Pickett, J. A., Field, L. M., Zhou, J.-J., & Zhang, Y.-J. (2013). Identification of genes expressed in the sex pheromone gland of the black cutworm Agrotis ipsilon with putative roles in sex pheromone biosynthesis and transport. BMC Genomics, 14, 636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanin, O., & Rafaeli, A. (2014). Understanding the functions of sex peptide receptors? In R. Chandrasekar, B. K. Tyagi, Z. Z. Gui, & G. Reeck (Eds.), Short views on insect molecular biology (Vol. 2, pp. 371–383). Manhattan: Kansas State University.

    Google Scholar 

  • Hanin, O., Rubin, B., Applebaum, S. W., & Rafaeli, A. (2008). Structure-activity relationships of pheromonostasis induced by ACCase-inhibitor herbicides in the moth Helicoverpa armigera. Pesticide Biochemistry and Physiology, 91, 153–159.

    Article  CAS  Google Scholar 

  • Hanin, O., Azrielli, A., Zakin, V., Applebaum, S., & Rafaeli, A. (2011). Identification and differential expression of a sex-peptide receptor in Helicoverpa armigera. Insect Biochemistry and Molecular Biology, 41, 537–544.

    Article  CAS  PubMed  Google Scholar 

  • Hanin, O., Azrielli, A., Applebaum, S., & Rafaeli, A. (2012). Functional impact of silencing the Helicoverpa armigera sex-peptide receptor on female reproductive behavior. Insect Molecular Biology, 21, 161–167.

    Article  CAS  PubMed  Google Scholar 

  • Hasemeyer, M., Yapici, N., Heberlein, U., & Dickson, B. J. (2009). Sensory neurons in the Drosophila genital tract regulate female reproductive behavior. Neuron, 61, 511–518.

    Article  PubMed  Google Scholar 

  • Hassanien, I. T. E., Grötzner, M., Meyering-Vos, M., & Hoffmann, K. H. (2014). Neuropeptides affecting the transfer of juvenile hormones from males to females during mating in Spodoptera frugiperda. Journal of Insect Physiology, 66, 45–52.

    Article  CAS  PubMed  Google Scholar 

  • Jacquin, E., Jurenka, R. A., Ljungberg, H., Nagnan, P., Lofstedt, C., Descoins, C., & Roelofs, W. L. (1994). Control of sex pheromone biosynthesis in the moth Mamestra brassicae by the pheromone biosynthesis activating neuropeptide. Insect Biochemistry and Molecular Biology, 24, 203–211.

    Article  CAS  Google Scholar 

  • Jin, Z. Y., & Gong, H. (2001). Male accessory gland derived factors can stimulate oogenesis and enhance oviposition in Helicoverpa armigera (Lepidoptera: Noctuidae). Archives of Insect Biochemistry and Physiology, 46, 175–185.

    Article  CAS  PubMed  Google Scholar 

  • Jung, C. R., & Kim, Y. (2014). Comparative transcriptome analysis of sex pheromone glands of two sympatric lepidopteran congener species. Genomics, 103, 308–315.

    Article  CAS  PubMed  Google Scholar 

  • Jurenka, R. A. (2003). Biochemistry of female moth sex pheromones. In R. Vogt & G. Blomquist (Eds.), Insect pheromone biochemistry and molecular biology (pp. 53–80). New York: Academic.

    Chapter  Google Scholar 

  • Kim, Y. J., Bartalska, K., Audsley, N., Yamanaka, N., Yapici, N., Lee, J. Y., Kim, Y. C., Markovic, M., Isaac, E., Tanaka, Y., & Dickson, B. J. (2010). MIPs are ancestral ligands for the sex peptide receptor. Proceedings of the National Academy of Sciences of the United States of America, 107, 6520–6525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kingan, T. G., Bodnar, W. M., Raina, A. K., Shabanowitz, J., & Hunt, D. F. (1995). The loss of female sex pheromone after mating in the corn earworm moth Helicoverpa zea: identification of a male pheromonostatic peptide. Proceedings of the National Academy of Sciences of the United States of America, 92, 5082–5086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleinman, Z. (2008). Reproductive behavior and pheromone production of the Codling Moth Cydia pomonella (Lepidptera: Tortricidae): Stimulatory and inhibitory influences. M.Sc. thesis, The Hebrew University (In Hebrew with English Abstract).

    Google Scholar 

  • Knipling, E. F. (1979). The basic principles of insect population suppression management (U.S.D.A. Agric. Handbook No. 512, 659 p). Washington, DC.

    Google Scholar 

  • Kubli, E. (2003). Sex-peptides: seminal peptides of the Drosophila male. Cellular and Molecular Life Sciences, 60, 1689–1704.

    Article  CAS  PubMed  Google Scholar 

  • Liu, H., & Kubli, E. (2003). Sex-peptide is the molecular basis of the sperm effect in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 100, 9929–9933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller, T. A. (2011). Genetically modifies insects as used in SIT should not require regulation. Phytoparasitica, 39, 415–418.

    Article  Google Scholar 

  • Moshitzky, P., Fleischmann, I., Chaimov, N., Saudan, P., Klauser, S., Kubli, E., & Applebaum, S. W. (1996). Sex-peptide activates juvenile hormone biosynthesis in the Drosophila melanogaster corpus allatum. Archives of Insect Biochemistry and Physiology, 32, 363–374.

    Article  CAS  PubMed  Google Scholar 

  • Nachman, R. (2014). Peptidomics applied: A new strategy for development of selective antagonists/agonists of insect pyrokinin (FXPRLamide) family using a novel conformational-mimetic motif. European Proteomics Association Open Proteomics, 3, 138–142.

    Article  CAS  Google Scholar 

  • Nagalakmish, V., Applebaum, S. W., Kubli, E. C., Choffat, Y., & Rafaeli, A. (2004). The presence of Drosophila melanogaster sex Peptide-like immunoreactivity in the accessory glands of male Helicoverpa armigera. Journal of Insect Physiology, 50, 241–248.

    Article  Google Scholar 

  • Nagalakshmi, V. K., Applebaum, S. W., Azrielli, A., & Rafaeli, A. (2007). Female sex pheromone suppression and the fate of sex-peptide like peptides in mated moths of Helicoverpa armigera. Advances Insect Biochemistry and Physiology, 64, 142–155.

    Article  CAS  Google Scholar 

  • Nakayama, S., Kaiser, K., & Aigaki, T. (1997). Ectopic expression of sex-peptide in a variety of tissues in Drosophila females using the P (GAL4) enhancer-trap system. Molecular & General Genetics, 254, 449–455.

    Article  CAS  Google Scholar 

  • O’Brochta, D. A., & Handler, A. M. (2008). Perspectives on the state of insect transgenics. Advances in Experimental Medicine and Biology, 627, 1–18.

    Article  PubMed  Google Scholar 

  • Ottiger, M., Soller, M., Stocker, R. F., & Kubli, E. (2000). Binding Sites of Drosophila melanogaster sex peptide pheromones. Journal of Neurobiology, 44, 57–71.

    Article  CAS  PubMed  Google Scholar 

  • Peng, J., Chen, S., Büsser, S., Liu, H., Honegger, T., & Kubli, E. (2005). Gradual release of sperm bound sex-peptide controls female post-mating behavior in Drosophila. Current Biology, 15, 207–213.

    Article  CAS  PubMed  Google Scholar 

  • Poels, J., Van Loy, T., Vandersmissen, H. P., Van Hiel, B., Van Soest, S., Nachman, R. J., & Vanden Broeck, J. (2010). Myoinhibiting peptides are the ancestral ligands of the promiscuous Drosophila sex peptide receptor. Cellular and Molecular Life Sciences, 67, 3511–3522.

    Article  CAS  PubMed  Google Scholar 

  • Rafaeli, A. (2002). Neuroendocrine control of pheromone biosynthesis in moths. International Review of Cytology, 213, 49–92.

    Article  CAS  PubMed  Google Scholar 

  • Rafaeli, A. (2009). Pheromone Biosynthesis Activating Neuropeptide (PBAN): Regulatory role and mode of action. General and Comparative Endocrinology, 162, 69–78.

    Article  CAS  PubMed  Google Scholar 

  • Rafaeli, A. (2011). Moth sex-pheromone production: Biosynthetic pathways, regulatory physiology, inhibitory processes and disruption. In L. Cauterruccio (Eds.), Moths: Types, ecological significance and control (chap. 4, pp. 115–143). Huntington: Nova Science Publishers, Inc.

    Google Scholar 

  • Rafaeli, A., & Bober, R. (2005). The effect of the juvenile hormone analog, fenoxycarb on the PBAN-receptor and pheromone production in adults of the moth Helicoverpa armigera: an “aging” hormone in adult females? Journal of Insect Physiology, 51, 401–410.

    Article  CAS  PubMed  Google Scholar 

  • Rafaeli, A., & Gileadi, C. (1996). Multi-signal transduction of moth pheromone biosynthesis-activating neuropeptide (PBAN) and its modulation: Involvement of G-proteins? In B. Kirsch & R. Mentlein (Eds.), The peptidergic neuron (pp. 239–244). Basel: Birkhauser.

    Chapter  Google Scholar 

  • Rafaeli, A., & Hanin, O. (2013). The influence of photoperiod and mating on the profiles of seminal fluid peptides from male accessory glands of Helicoverpa armigera. Israel Journal of Entomology, 43, 51–79.

    Google Scholar 

  • Rafaeli, A., & Jurenka, R. A. (2003). PBAN regulation of pheromone biosynthesis in female moths. In G. J. Blomquist & R. Vogt (Eds.), Insect Pheromone biochemistry & molecular biology (pp. 107–136). London: Elsevier Academic Press.

    Google Scholar 

  • Rafaeli, A., Bober, R., Becker, L., Choi, M.-Y., Fuerst, E.-J., & Jurenka, R. A. (2007). Spatial distribution and differential expression of the receptor for pheromone-biosynthesis-activating neuropeptide (PBAN-R) at the protein and gene levels in tissues of adult Helicoverpa armigera (Lepidoptera: Noctuidae). Insect Molecular Biology, 16, 287–293.

    Article  CAS  PubMed  Google Scholar 

  • Raina, A. K., & Klun, J. A. (1984). Brain factor control of sex pheromone production in the female corn earworm moth. Science, 225, 531–532.

    Article  CAS  PubMed  Google Scholar 

  • Ramaswamy, S. B., Shu, S., Park, Y. I., & Zeng, F. (1997). Dynamics of Juvenile Hormone-mediated gonadotropism in the Lepidoptera. Archives of Insect Biochemistry and Physiology, 35, 539–558.

    Article  CAS  Google Scholar 

  • Simmons, G. S., Alphey, L. S., Vasquez, T., Morrison, N. I., Epton, M. J., Miller, E., Miller, T. A., & Staten, R. T. (2007). Potential use of a conditional lethal transgenic pink bollworm Pectinophora gossypiella in area-wide eradication or suppression programmes. In M. J. B. Vreysen, A. S. Robinson, & J. Hendrichs (Eds.), Area-wide control of insect pests from research to field implementation (XV, 789 p). Dordrecht: Springer.

    Google Scholar 

  • Soller, M., Bownes, M., & Kubli, E. (1997). Mating and sex peptide stimulate the accumulation of yolk in oocytes of D. melanogaster. European Journal of Biochemistry, 243, 732–738.

    Article  CAS  PubMed  Google Scholar 

  • Soller, M., Bownes, M., & Kubli, E. (1999). Control of oocyte maturation in sexually mature Drosophila females. Developmental Biology, 208, 337–351.

    Article  CAS  PubMed  Google Scholar 

  • Strandh, M., Johansson, T., Ahrén, D., & Löfstedt, C. (2008). Transcriptional analysis of the pheromone gland of the turnip moth, Agrotis segetum (Noctuidae) reveals candidate genes involved in pheromone production. Insect Molecular Biology, 17, 73–85.

    Article  CAS  PubMed  Google Scholar 

  • Tillman, J. A., Seybold, S. J., Jurenka, R. A., & Blomquist, G. J. (1999). Insect pheromones – an overview of biosynthesis and endocrine regulation. Insect Biochemistry and Molecular Biology, 29, 481–514.

    Article  CAS  PubMed  Google Scholar 

  • Tsfadia, O., Azrielli, A., Falach, L., Zada, A., Roelofs, W., & Rafaeli, A. (2008). Pheromone biosynthetic pathways: PBAN-regulated rate-limiting steps and differential expression of desaturase genes in moth species. Insect Biochemistry and Molecular Biology, 38, 552–567.

    Article  CAS  PubMed  Google Scholar 

  • Vogel, H., Heidel, A. J., Heckel, D. G., & Groot, A. T. (2010). Transcriptome analysis of the sex pheromone gland of the noctuid moth Heliothis virescens. BMC Genomics, 11, 29.

    Article  PubMed  PubMed Central  Google Scholar 

  • Welter, S. C., Pickel, C., Millar, J. G., Cave, F., Van Steenwyk, R. A., & Dunley, J. (2005). Pheromone mating disruption offers selective management options for key pests. California Agriculture, 59, 16–22.

    Article  Google Scholar 

  • Wolfner, M. F. (2009). Battle and ballet: Molecular interactions between the sexes in Drosophila. The Journal of Heredity, 100, 399–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, C. H., Rumpf, S., Xiang, Y., Gordon, M. D., Song, W., Jan, L. Y., & Jan, Y. N. (2009). Control of the postmating behavioral switch in Drosophila females by internal sensory neurons. Neuron, 61, 519–526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yapici, N., Kim, Y. J., Ribeiro, C., & Dickson, B. J. (2008). A receptor that mediated the post-mating switch in Drosophila reproductive behaviour. Nature, 451, 33–37.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ada Rafaeli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rafaeli, A. (2016). Revelations on the Regulatory Mechanisms in Moth Sex-Pheromone Signals. In: Czosnek, H., Ghanim, M. (eds) Management of Insect Pests to Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-319-24049-7_5

Download citation

Publish with us

Policies and ethics