Advertisement

An Intuitive Introduction to Quality Control with R

  • Emilio L. Cano
  • Javier M. Moguerza
  • Mariano Prieto Corcoba
Chapter
Part of the Use R! book series (USE R)

Abstract

This chapter introduces Quality Control by means of an intuitive example. Furthermore, that example is used to illustrate how to use the R statistical software and programming language for Quality Control. A description of R outlining its advantages is also included in this chapter, all in all paving the way to further investigation throughout the book.

References

  1. 1.
    Cano, E.L., Moguerza, J.M., Redchuk, A.: Six Sigma with R. Statistical Engineering for Process Improvement. Use R!, vol. 36. Springer, New York (2012). http://www.springer.com/statistics/book/978-1-4614-3651-5
  2. 2.
    Chambers, J.M.: Software for Data Analysis. Programming with R. Statistics and Computing. Springer, Berlin (2008)CrossRefzbMATHGoogle Scholar
  3. 3.
    Free Software Foundation, Inc.: Free Software Foundation website. http://gnu.org (2014). Accessed 10 July 2014
  4. 4.
  5. 5.
    Ihaka, R., Gentleman, R.: R: a language for data analysis and graphics. J. Comput. Graph. Stat. 5, 299–314 (1996)Google Scholar
  6. 6.
    ISO TC69/SC1–Terminology and Symbols: ISO 3534-1:2006 - Statistics – Vocabulary and symbols – Part 1: General statistical terms and terms used in probability. Published standard. http://www.iso.org/iso/catalogue_detail.htm?csnumber=40145 (2010)
  7. 7.
    ISO TC69/SC1–Terminology and Symbols: ISO 3534-2:2006 - Statistics – Vocabulary and symbols – Part 2: Applied statistics. Published standard. http://www.iso.org/iso/catalogue_detail.htm?csnumber=40147 (2014)
  8. 8.
    ISO TC69/SC4–Applications of statistical methods in process management: ISO 11462-1:2001 - Guidelines for implementation of statistical process control (SPC) – Part 1: Elements of SPC. Published standard. http://www.iso.org/iso/catalogue_detail.htm?csnumber=33381 (2012)
  9. 9.
    ISO TC69/SC4–Applications of statistical methods in process management: ISO 7870-2:2013 - Control charts – Part 2: Shewhart control charts. Published standard. http://www.iso.org/iso/catalogue_detail.htm?csnumber=40174 (2013)
  10. 10.
    ISO TC69/SC4–Applications of statistical methods in process management: ISO 22514-1:2014 - Statistical methods in process management – Capability and performance – Part 1: General principles and concepts. Published standard. http://www.iso.org/iso/catalogue_detail.htm?csnumber=64135 (2014)
  11. 11.
    ISO TC69/SC4–Applications of statistical methods in process management: ISO 7870-1:2014 - Control charts – Part 1: General guidelines. Published standard. http://www.iso.org/iso/catalogue_detail.htm?csnumber=62649 (2014)
  12. 12.
    ISO TC69/SC6–Measurement methods and results: ISO 5725-1:1994 - Accuracy (trueness and precision) of measurement methods and results – Part 1: General principles and definitions. Published standard. http://www.iso.org/iso/catalogue_detail.htm?csnumber=11833 (2012)
  13. 13.
    ISO TC69/SC6–Measurement methods and results: ISO 10576-1:2003 - Statistical methods – Guidelines for the evaluation of conformity with specified requirements – Part 1: General principles. Published standard. http://www.iso.org/iso/catalogue_detail.htm?csnumber=32373 (2014)
  14. 14.
    Leisch, F.: Sweave: dynamic generation of statistical reports using literate data analysis. In: Härdle, W., Rönz, B. (eds.) Compstat 2002 — Proceedings in Computational Statistics, pp. 575–580. Physica, Heidelberg (2002). http://www.stat.uni-muenchen.de/~leisch/Sweave
  15. 15.
    R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2015). http://www.R-project.org/
  16. 16.
    Shewhart, W.: Economic Control of Quality in Manufactured Products. Van Nostrom, New York (1931)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Emilio L. Cano
    • 1
    • 2
  • Javier M. Moguerza
    • 1
  • Mariano Prieto Corcoba
    • 3
  1. 1.Department of Computer Science and StatisticsRey Juan Carlos UniversityMadridSpain
  2. 2.Statistics Area, DHEPThe University of Castilla-La ManchaCiudad RealSpain
  3. 3.ENUSA Industrias AvanzadasMadridSpain

Personalised recommendations