Skip to main content

Food Processing Using Supercritical Fluids

  • Chapter
  • First Online:

Part of the book series: Food Engineering Series ((FSES))

Abstract

A “green” revolution as a part of necessary sustainable development, use also high pressure as a tool. The main impetus for this conversion is on one way driven by a concern to the environment to reduce the usage of solvents and energy. On the other hand increasing consumer demand on new and natural products use high pressure as a tool to design and produce the natural products with completely new characteristics.

Research in supercritical extraction technology started about two decades ago. Meanwhile several hundred supercritical extraction plants are in operation worldwide, with a strong increase in the past decade. Extraction of plant materials, like hop constituents, decaffeination of tea and coffee, separation of lecithin from oil are high pressure processes, which are performed on large industrial scale. Several smaller industrial units are in operation also for extraction of spices for food industry and natural substances for use in cosmetics (Proceedings of the fifth international symposium on high pressure process technology and chemical engineering, 24–27 June 2007, Segovia).

The unique thermodynamic and fluid dynamic properties of different gases used as dense fluids, e.g., sub- or supercritical fluids can be used also for integrated extraction and in situ formulation like impregnation of solid particles, for formation of solid powderous emulsions, particle coating, etc. will be presented.

We could summarize that extraction of substances from solids or liquids and their integrated formulation in products with specific properties is one of the very promising applications of supercritical fluids and several laboratory scale as well industrial scale applications, including fundamental data for design of high pressure processes, will be presented in details.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

a, b, u, w :

Parameters of cubic equations of state

p c :

Critical pressure

R :

Gas constant

T c :

Critical temperature

V c :

Critical volume

References

  • Adachi Y, Lu BCY (1983) Supercritical fluid extraction with carbon-dioxide and ethylene. Fluid Phase Equilib 14:147–156

    Article  CAS  Google Scholar 

  • Almeida PP, Mezzomo N, Ferreira SRS (2012) Extraction of Mentha spicata L. volatile compounds: evaluation of process parameters and extract composition. Food Bioprocess Technol 5:548–559

    Article  CAS  Google Scholar 

  • Anderko A (2000) Cubic and generalized van der waals equations. In: Sengers JV, Kayser RF, Peters CJ, White HJ (eds) Experimental thermodynamics. Elsevier, Amsterdam, pp 75–126

    Google Scholar 

  • Arnaiz E, Bernal J, Martin MT et al (2011) Supercritical fluid extraction of lipids from broccoli leaves. Eur J Lipid Sci Technol 113:479–486

    Article  CAS  Google Scholar 

  • Aro H, Jarvenpaa E, Konko K, Sihvonen M, Hietaniemi V, Huopalahti R (2009) Isolation and purification of egg yolk phospholipids using liquid extraction and pilot-scale supercritical fluid techniques. Eur Food Res Technol 228(6):857–863

    Article  CAS  Google Scholar 

  • Barroso MST, Villanueva G, Lucas AM et al (2011) Supercritical fluid extraction of volatile and non-volatile compounds from Schinus molle L. Braz J Chem Eng 28:305–312

    Article  CAS  Google Scholar 

  • Baseri H, Haghighi-Asl A, Lotfollahi MN (2010) Effects of operating parameters on the cinnamaldehyde content of extracted essential oil using various methods. Chem Eng Technol 33:267–274

    Article  CAS  Google Scholar 

  • Baseri H, Lotfollahi MN, Asl AH (2011) Effects of some experimental parameters on yield and composition of supercritical carbon dioxide extracts of cinnamon bark. J Food Process Eng 34:293–303

    Article  CAS  Google Scholar 

  • Bender E (1975) Equations of state for ethylene and propylene. Cryogenics 15(11):667–673

    Google Scholar 

  • Bertuco A, Vetter G (eds) (2001) High pressure process technology: fundamentals and applications. Industrial Chemistry Library, Elsevier, Amsterdam

    Google Scholar 

  • Bhattacharjee P, Chatterjee D, Singhal RS (2012) Supercritical carbon dioxide extraction of squalene from Amaranthus paniculatus: experiments and process characterization. Food Bioprocess Technol 5:2506–2521

    Article  CAS  Google Scholar 

  • Bimakr M, Rahman RLA, Taip FS et al (2011) Comparison of different extraction methods for the extraction of major bioactive flavonoid compounds from spearmint (Mentha spicata L.) leaves. Food Bioprod Process 89:67–72

    Article  Google Scholar 

  • Bimakr M, Rahman RA, Ganjloo A et al (2012) Optimization of supercritical carbon dioxide extraction of bioactive flavonoid compounds from spearmint (Mentha spicata L.) leaves by using response surface methodology. Food Bioprocess Technol 5:912–920

    Article  CAS  Google Scholar 

  • Brunner G (1994) Gas extraction. In: An introduction to fundamentals of supercritical fluids and the application to separation processes. Steinkopff, Darmstadt

    Google Scholar 

  • Bruno TJ, Ely JF (eds) (1991) Supercritical fluid technology. CRC Press, Boca Raton

    Google Scholar 

  • Caputo G, Adami R, Reverchon E (2008) Supercritical fluid crystallization of adipic acid using urea as habit modifier. Cryst Growth Des 8(8):2707–2715

    Article  CAS  Google Scholar 

  • Cardoso MAT, Antunes S, van Keulen F, Ferreira BS, Geraldes A, Cabral JMS, Palavra AM (2009) Supercritical antisolvent micronisation of synthetic all-trans-beta-carotene with tetrahydrofuran as solvent and carbon dioxide as antisolvent. J Chem Technol Biotechnol 84(2):215–222

    Article  CAS  Google Scholar 

  • Carneiro DD, Oliveira MIS, Mendes MF, Coelho GLV (2010) Production in supercritical conditions and evaluation of the potential of the micronized benzoic acid in foods. Boletim do Centro de Pesquisa de Processamento de Slimentos 28(1):1–10

    CAS  Google Scholar 

  • Castro-Vargas HI, Rodriguez-Varela LI, Parada-Alfonso F (2011) Guava (Psidium guajava L.) seed oil obtained with a homemade supercritical fluid extraction system using supercritical CO2 and co-solvent. J Supercrit Fluids 56:238–242

    Article  CAS  Google Scholar 

  • Catchpole OJ, Tallon SJ, Eltringham WE et al (2009) The extraction and fractionation of specialty lipids using near critical fluids. J Supercrit Fluids 47:591–597

    Article  CAS  Google Scholar 

  • Chen KX, Zhang XY, Pan J, Zhang WC, Yin WH (2005) Gas antisolvent precipitation of Ginkgo ginkgolides with supercritical CO2. Powder Technol 52(1-3):127–132

    Article  CAS  Google Scholar 

  • Chen WH, Chen CH, Chang CMJ et al (2010) Supercritical carbon dioxide extraction of triglycerides from Aquilaria crassna seeds. Sep Purif Technol 73:135–141

    Article  CAS  Google Scholar 

  • Cheng YJ, Shieh CJ, Wang YC et al (2012) Supercritical carbon dioxide extraction of omega-3 oil compounds from Ficus awkeotsang makino achenes. Sep Purif Technol 98:62–68

    Article  CAS  Google Scholar 

  • Cheong PL, Zhang DG, Ohgaki K et al (1986) High-pressure phase-equilibria for binary-systems involving a solid-phase. Fluid Phase Equilib 29:555–562

    Article  CAS  Google Scholar 

  • Cho YC, Cheng JH, Hsu SL et al (2011) Supercritical carbon dioxide anti-solvent precipitation of anti-oxidative zeaxanthin highly recovered by elution chromatography from Nannochloropsis oculata. Sep Purif Technol 78:274–280

    Article  CAS  Google Scholar 

  • Christov M, Dohrn R (2002) High-pressure fluid phase equilibria—experimental methods and systems investigated (1994-1999). Fluid Phase Equilib 202(1):153–218

    Article  CAS  Google Scholar 

  • Cocero MJ, Ferrero S (2002) Crystallization of beta-carotene by a GAS process in batch—effect of operating conditions. J Supercrit Fluids 22(3):237–245

    Article  CAS  Google Scholar 

  • Corso MP, Fagundes-Klen MR, Silva EA et al (2010) Extraction of sesame seed (Sesamun indicum L.) oil using compressed propane and supercritical carbon dioxide. J Supercrit Fluids 52:56–61

    Article  CAS  Google Scholar 

  • Costa P, Grosso C, Goncalves S et al (2012a) Supercritical fluid extraction and hydrodistillation for the recovery of bioactive compounds from Lavandula viridis L’Her. Food Chem 135:112–121

    Article  CAS  Google Scholar 

  • Costa P, Goncalves S, Grosso C et al (2012b) Chemical profiling and biological screening of Thymus lotocephalus extracts obtained by supercritical fluid extraction and hydrodistillation. Ind Crop Prod 36:246–256

    Article  CAS  Google Scholar 

  • Dalvi SV, Mukhopadhyay M (2009) Use of subcritical CO2 for production of ultrafine particles by pressure reduction of gas-expanded organic liquids. Ind Eng Chem Res 48(12):5696–5707

    Article  CAS  Google Scholar 

  • Danh LT, Ngo DAT, Le TNH et al (2012) Antioxidant activity, yield and chemical composition of lavender essential oil extracted by supercritical CO2. J Supercrit Fluids 70:27–34

    Article  CAS  Google Scholar 

  • De Oliveira PF, Machado RAF, Bolzan A et al (2012) Supercritical fluid extraction of hernandulcin from Lippia dulcis Trev. J Supercrit Fluids 63:161–168

    Article  CAS  Google Scholar 

  • De Paz E, Martin A, Duarte CMM, Cocero MJ (2012) Formulation of beta-carotene with poly-(epsilon-caprolactones) by PGSS process. Powder Technol 271:77–83

    Article  CAS  Google Scholar 

  • Debenedetti PG, Tom JW, Kwauk X et al (1993) Rapid expansion of supercritical solutions (RESS)—fundamentals and applications. Fluid Phase Equilib 82:311–321

    Article  CAS  Google Scholar 

  • Diaz-Reinoso B, Moure A, Dominguez H et al (2007) Antioxidant extraction by supercritical fluids. In: Martinez JL (ed) Supercritical fluid extraction of nutraceuticals and bioactive compounds. CRC Press, Boca Raton, pp 275–304

    Chapter  Google Scholar 

  • Dohrn R, Brunner G (1995) High-pressure fluid-phase equilibria—experimental methods and systems investigated (1988-1993). Fluid Phase Equilib 106(1-2):213–282

    Article  CAS  Google Scholar 

  • Dohrn R, Peper S, Fonseca JMS (2010) High-pressure fluid-phase equilibria: experimental methods and systems investigated (2000-2004). Fluid Phase Equilib 288(1-2):1–54

    Article  CAS  Google Scholar 

  • Dohrn R, Fonseca JMS, Peper S (2012) Experimental methods for phase equilibria at high pressures. Annu Rev Chem Biomol Eng 3:343–367

    Article  CAS  Google Scholar 

  • Domingues RMA, Oliveira ELG, Freire CSR et al (2012) Supercritical fluid extraction of Eucalyptus globulus Bark—a promising approach for triterpenoid production. Int J Mol Sci 13:7648–7662

    Article  CAS  Google Scholar 

  • Eggers R, Wagner H, Jaeger P (1996) Extraction of spray-particles with supercritical fluids. In: von Rohr PR, Trepp C (eds) High pressure chemical engineering. Elsevier, Amsterdam, pp 247–252

    Google Scholar 

  • Egydio JA, Moraes AM, Rosa PTV (2010) Supercritical fluid extraction of lycopene from tomato juice and characterization of its antioxidation activity. J Supercrit Fluids 54:159–164

    Article  CAS  Google Scholar 

  • Eltringham W, Catchpole OJ (2007) Processing of fish oils by supercritical fluids. In: Martinez JL (ed) Supercritical fluid extraction of nutraceuticals and bioactive compounds. CRC Press, Boca Raton, pp 141–188

    Chapter  Google Scholar 

  • Fang T, Goto M, Sasaki M et al (2007) Extraction and purification of natural tocopherols by supercritical CO2. In: Martinez JL (ed) Supercritical fluid extraction of nutraceuticals and bioactive compounds. CRC Press, Boca Raton, pp 103–140

    Chapter  Google Scholar 

  • Fernandez-Sevilla JM, Fernandez FGA, Grima EM (2010) Biotechnological production of lutein and its applications. Appl Microbiol Biotechnol 86:27–40

    Article  CAS  Google Scholar 

  • Fleck U, Brunner G, Karge R (2000) Purification of synthetic crude tocophenol acetate by means of supercritical fluid extraction. In: Proceedings of the fifth international symposium on supercritical fluids

    Google Scholar 

  • Floris T, Filippino G, Scrugli S et al (2010) Antioxidant compounds recovery from grape residues by a supercritical antisolvent assisted process. J Supercrit Fluids 54:165–170

    Article  CAS  Google Scholar 

  • Fonseca JMS, Dohrn R, Peper S (2011) High-pressure fluid-phase equilibria: experimental methods and systems investigated (2005-2008). Fluid Phase Equilib 300(1-2):1–69

    Article  CAS  Google Scholar 

  • Fornari RE, Alessi P, Kikic I (1990) High-pressure fluid phase-equilibria—experimental methods and systems investigated (1978-1987). Fluid Phase Equilib 57(1-2):1–33

    Article  CAS  Google Scholar 

  • Fukne-Kokot K, Konig A, Knez Z et al (2000) Comparison of different methods for determination of the S-L-G equilibrium curve of a solid component in the presence of a compressed gas. Fluid Phase Equilib 173(2):297–310

    Article  CAS  Google Scholar 

  • Fukne-Kokot K, Skerget M, Konig A et al (2003) Modified freezing method for measuring the gas solubility along the solid-liquid-gas equilibrium line. Fluid Phase Equilib 205(2):233–247

    Article  CAS  Google Scholar 

  • Gamse T, Marr R (2001) In: Bertucco A, Vetter G (eds) High pressure technology: fundamentals and application. Industrial Chemistry Library, vol. 9. Elsevier, Amsterdam, p 383

    Google Scholar 

  • Gamse T, Rogler I, Marr R (1999) Supercritical CO2 extraction for utilisation of excess wine of poor quality. J Supercrit Fluids 14:123–128

    Article  CAS  Google Scholar 

  • Ganan N, Brignole EA (2011) Fractionation of essential oils with biocidal activity using supercritical CO2—experiments and modeling. J Supercrit Fluids 58:58–67

    Article  CAS  Google Scholar 

  • Gardner DS (1993) Commercial scale extraction of alpha acids and hop oils with compressed CO2. In: King MB, Bott TR (eds) Extraction of natural products using near-critical solvents. Chapman & Hall, Glasgow, pp 84–100

    Chapter  Google Scholar 

  • Ghafoor K, Park J, Choi ZH (2010) Optimization of supercritical fluid extraction of bioactive compounds from grape (Vitis labrusca B.) peel by using response surface methodology. Innovative Food Sci Emerg Technol 11:485–490

    Article  CAS  Google Scholar 

  • Ghoreishi SM, Mardani E, Ghaziaskar HS (2011) Separation of gamma-linolenic and other polyunsaturated fatty acids from Boraginaceae via supercritical CO2. J Sep Sci 34:233–240

    Article  CAS  Google Scholar 

  • Ghoreishi SM, Kamali H, Ghaziaskar HS et al (2012) Optimization of supercritical extraction of linalyl acetate from lavender via box–behnken design. Chem Eng Technol 35:1641–1648

    Article  CAS  Google Scholar 

  • Gupta RB, Shim JJ (2007) Solubility in supercritical carbon dioxide. CRC press, Boca Raton

    Google Scholar 

  • Hanu LG, Alessi P, Kilzer A, Kareth S (2012) Manufacturing and characterization of water filled micro-composites. J Supercrit Fluids 66:274–281

    Article  CAS  Google Scholar 

  • Harrison JJ, Lee C, Lenzer T, Oum K (2007) On-line in-situ characterization of CO2 RESS processes for benzoic acid, cholesterol and aspirin. Green Chem 9(4):351–356

    Article  CAS  Google Scholar 

  • Hatami T, Rahimi M, Veggi PC et al (2011) Near-critical carbon dioxide extraction of khoa (Satureja boliviana Benth Briq) using ethanol as a co-solvent: experiment and modeling. J Supercrit Fluids 55:929–936

    Article  CAS  Google Scholar 

  • Hatami T, Cavalcanti RN, Takeuchi TM et al (2012) Supercritical fluid extraction of bioactive compounds from macela (Achyrocline satureioides) flowers: kinetic, experiments and modeling. J Supercrit Fluids 65:71–77

    Article  CAS  Google Scholar 

  • He WZ, Suo QL, Hong HL, Li GM, Zhao XH, Li CP, Shan A (2006) Supercritical antisolvent micronization of natural carotene by the SEDS process through prefilming atomization. Ind Eng Chem Res 45(6):2108–2115

    Article  CAS  Google Scholar 

  • He SA, Zhng ZY, Xu F, Zhang SY, Lei ZJ (2010a) Micronization of magnolia bark extract with enhanced dissolution behavior by rapid expansion of supercritical solution. Chem Pharm Bull 58(2):154–159

    Article  CAS  Google Scholar 

  • He WH, Gao YX, Yuan F et al (2010b) Optimization of supercritical carbon dioxide extraction of gardenia fruit oil and the analysis of functional components. J Am Oil Chem Soc 87:1071–1079

    Article  CAS  Google Scholar 

  • Hezave AZ, Aftab S, Esmaeilzadeh F (2010) Micronization of creatine monohydrate via rapid expansion of supercritical solution (RESS). J Supercrit Fluids 55(1):316–324

    Article  CAS  Google Scholar 

  • Hrabovski N, Sinadinović-Fišer S, Nikolovski B et al (2012) Phytosterols in pumpkin seed oil extracted by organic solvents and supercritical CO2. Eur J Lipid Sci Technol 114:1204–1211

    Article  CAS  Google Scholar 

  • Hsu JH, Tan CS (1994) Separation of ethanol/water solution with supercritical CO2 in the presence of a membrane. In: Rizvi SSH (ed) Supercritical fluid processing of food and biomaterials. Chapman & Hall, New York, pp 114–122

    Chapter  Google Scholar 

  • Hu XH, Guo YN, Wang L, Hua D, Hong YZ, Li J (2011) Coenzyme Q(10) nanoparticles prepared by a supercritical fluid-based method. J Supercrit Fluids 57(1):66–72

    Article  CAS  Google Scholar 

  • Ismail M, Mariod A, Bagalkotkar G et al (2010) Fatty acid composition and antioxidant activity of oils from two cultivars of cantaloupe extracted by supercritical fluid extraction. Grasas Aceites 61:37–44

    Article  CAS  Google Scholar 

  • Ivanović J, Mišić D, Ristić M et al (2010) Supercritical CO2 extract and essential oil of bay (Laurus nobilis L.) chemical composition and antibacterial activity. J Serb Chem Soc 75:395–404

    Article  Google Scholar 

  • Ivanović J, Zizović I, Ristić M et al (2011) The analysis of simultaneous clove/oregano and clove/thyme supercritical extraction. J Supercrit Fluids 55:983–991

    Article  CAS  Google Scholar 

  • Ixtaina VX, Vega A, Nolasco SM et al (2010) Supercritical carbon dioxide extraction of oil from Mexican chia seed (Salvia hispanica L.): characterization and process optimization. J Supercrit Fluids 55:192–199

    Article  CAS  Google Scholar 

  • Jessop PG, Leitner W (eds) (1999) Chemical synthesis using supercritical fluids. Wiley-VCH, Weinheim

    Google Scholar 

  • Jimenez P, Masson L, Barriga A et al (2011) Oxidative stability of oils containing olive leaf extracts obtained by pressure, supercritical and solvent–extraction. Eur J Lipid Sci Technol 113:497–505

    Article  CAS  Google Scholar 

  • Jokić S, Zeković Z, Vidović S et al (2010) Supercritical CO2 extraction of soybean oil: process optimisation and triacylglycerol composition. Int J Food Sci Technol 45:1939–1946

    Article  CAS  Google Scholar 

  • Jung J, Perrut M (2001) Particle design using supercritical fluids: literature and patent survey. J Supercrit Fluids 20(3):179–219

    Article  CAS  Google Scholar 

  • Kagliwal LD, Pol AS, Patil SC et al (2012) Antioxidant-rich extract from dehydrated sea buckthorn berries by supercritical carbon dioxide extraction. Food Bioprocess Technol 5:2768–2776

    Article  CAS  Google Scholar 

  • Kazarian SG, Chan KLA (2003) “Chemical photography” of drug release. Macromolecules 36(26):9866–9872

    Article  CAS  Google Scholar 

  • Khajeh M (2011) Optimization of process variables for essential oil components from Satureja hortensis by supercritical fluid extraction using box–behnken experimental design. J Supercrit Fluids 55:944–948

    Article  CAS  Google Scholar 

  • Khajeh M (2012) Optimisation of supercritical fluid extraction of essential oil components of Diplotaenia cachrydifolia: Box–Behnken design. Nat Prod Res 26:1926–1930

    Article  CAS  Google Scholar 

  • Khajeh M, Yamini Y, Shariati S (2010) Comparison of essential oils compositions of Nepeta persica obtained by supercritical carbon dioxide extraction and steam distillation methods. Food Bioprod Process 88:227–232

    Article  CAS  Google Scholar 

  • Khajeh M, Moghaddam MG, Shakeni M (2012) Application of artificial neural network in predicting the extraction yield of essential oils of Diplotaenia cachrydifolia by supercritical fluid extraction. J Supercrit Fluids 69:91–96

    Article  CAS  Google Scholar 

  • Kikic I, de Loos T (2002) Socrates intensive course—high pressure chemical engineering processes: basics and application, Graz

    Google Scholar 

  • Kikic I, De Zordi N, Moneghini M, Solinas D (2011) Antisolvent precipitation of vitamin B6: a thermodynamic study. J Chem Eng Data 56(12):4978–4983

    Article  CAS  Google Scholar 

  • Kim OT, Bang KH, Kim YC, Hyun DY, Kim MY, Cha SW (2009) Upregulation of ginsenoside and gene expression related to triterpene biosynthesis in ginseng hairy root cultures elicited by methyl jasmonate. Plant Cell Tiss Org 98(1):25–33

    Article  CAS  Google Scholar 

  • King JW, Srinivas K (2009) Multiple unit processing using sub- and supercritical fluids. J Supercrit Fluids 47:598–610

    Article  CAS  Google Scholar 

  • Knez Z (2009) Enzymatic reactions in dense gases. J Supercrit Fluids 47(3):357–372

    Article  CAS  Google Scholar 

  • Knez Ž (1989) Separation of components of citrus oils—industrial project. Unpublished data

    Google Scholar 

  • Knez Z, Habulin M (2002) Compressed gases as alternative enzymatic-reaction solvents: a short review. J Supercrit Fluids 23(1):29–42

    Article  CAS  Google Scholar 

  • Knez Z, Weidner E (2001) Precipitation of solids with dense gases. In: Bertucco A, Vetter G (eds) Industrial chemistry library. Elsevier, Amsterdam, pp 587–611

    Google Scholar 

  • Knez Z, Weidner E (2003) Particles formation and particle design using supercritical fluids. Curr Opin Solid State Mater Sci 7(4-5):353–361

    Article  CAS  Google Scholar 

  • Knez Ž, Posel F, Krmelj I (1994) High pressure extraction of organics from water. In: Rizvi SSH (ed) Supercritical fluid processing of food and biomaterials. Chapman & Hall, New York, pp 181–186

    Chapter  Google Scholar 

  • Knez Z, Skerget M, Knez Hrncič M (2010) Principles of supercritical fluid extraction and applications in the food, beverage and nutraceutical industries. In: Separation, extraction and concentration processes in the food, beverage and nutraceutical industries. Woodhead, Cambridge, pp 3–38

    Google Scholar 

  • Knez Z, Skerget M, Knez Hrncic M et al (2014) Particle formation using sub- and supercritical fluids. In: Anikeev V, Fan M (eds) Supercritical fluid technology for energy and environmental applications. Elsevier, Boston, pp 31–67

    Chapter  Google Scholar 

  • Kong KW, Rajab NF, Prasad KN et al (2010) Lycopene-rich fractions derived from pink guava by-product and their potential activity towards hydrogen peroxide-induced cellular and DNA damage. Food Chem 123:1142–1148

    Article  CAS  Google Scholar 

  • Ksibi H, Ben Moussa A, Baccar M (2006) Powder structure transition under the recrystallization conditions in the RESS process. Chem Eng Technol 29(7):868–874

    Article  CAS  Google Scholar 

  • Kumar SK, Johnston KP (1988) Modelling the solubility of solids in supercritical fluids with density as the independent variable. J Supercrit Fluids 1(1):15–22

    Article  CAS  Google Scholar 

  • Kwon KT, Uddin MS, Jung GW, Chun BS (2011) Preparation of micro particles of functional pigments by gas-saturated solution process using supercritical carbon dioxide and polyethylene glycol. Korean J Chem Eng 28(10):2044–2049

    Article  CAS  Google Scholar 

  • Lack E, Seidlitz H (1993) Commercial scale decaffeination of coffee and tea using supercritical CO2. In: King MB, Bott TR (eds) Extraction of natural products using near-critical solvents. Chapman & Hall, Glasgow, pp 101–139

    Chapter  Google Scholar 

  • Lack E, Simandy B, Bertucco A et al (2000) High pressure technology: fundamentals and application. Industrial Chemistry Library, vol 9, pp 537–575

    Google Scholar 

  • Lafka TI, Lazou AE, Sinanoglou VJ et al (2011) Phenolic and antioxidant potential of olive oil mill wastes. Food Chem 125:92–98

    Article  CAS  Google Scholar 

  • Lang ZM, Hong HL, Han LM, Zhu N, Suo Q (2012) Preparation of emodin-polyethylene glycol composite microparticles using a supercritical antisolvent process. Chem Eng Technol 35(2):362–368

    Article  CAS  Google Scholar 

  • Laroze LE, Diaz-Reinoso MA et al (2010) Extraction of antioxidants from several berries pressing wastes using conventional and supercritical solvents. Eur Food Res Technol 231:669–677

    Article  CAS  Google Scholar 

  • Li S (2007) Application of supercritical fluids in traditional Chinese medicines and natural products. In: Martinez JL (ed) Supercritical fluid extraction of nutraceuticals and bioactive compounds. CRC Press, Boca Raton, pp 215–242

    Chapter  Google Scholar 

  • Li J, Matos HA, de Azevedo EG (2004) Two-phase homogeneous model for particle formation from gas-saturated solution processes. J Supercrit Fluids 32(1-3):275–286

    Article  CAS  Google Scholar 

  • Li J, Rodrigues M, Paiva A, Matos HA, de Azevedo EG (2005) Modeling of the PGSS process by crystallization and atomization. AIChE J 51(8):2343–2357

    Article  CAS  Google Scholar 

  • Li HY, Wu J, Rempel CB et al (2010) Effect of operating parameters on oil and phenolic extraction using supercritical CO2. J Am Oil Chem Soc 87:1081–1089

    Article  CAS  Google Scholar 

  • Liau BC, Hong SE, Chang LP et al (2011) Separation of sight-protecting zeaxanthin from Nannochloropsis oculata by using supercritical fluids extraction coupled with elution chromatography. Sep Purif Technol 78:1–8

    Article  CAS  Google Scholar 

  • Liza MS, Rahman RA, Mandana B et al (2010) Supercritical carbon dioxide extraction of bioactive flavonoid from Strobilanthes crispus (Pecah kaca). Food Bioprod Process 88:319–326

    Article  CAS  Google Scholar 

  • Lubary M, de Loos TW, ter Horst JH, Hofland GW (2011) Production of microparticles from milk fat products using the Supercritical Melt Micronization (ScMM) process. J Supercrit Fluids 55(3):1079–1088

    Article  CAS  Google Scholar 

  • Lütge C, Schuetz E (2007) Market trends and technical developments in high pressure technology. In: Knez Z, Cocero MJ (eds) Proceedings of the fifth international symposium on high pressure process technology and chemical engineering, 24–27 June, Segovia, Spain

    Google Scholar 

  • Lütge C, Bork Ž, Knez Hrnčič M et al (eds) (2007) Fifth international symposium on high pressure process technology and chemical engineering, Segovia, Spain

    Google Scholar 

  • Machmudah S, Zakaria WS et al (2012) Lycopene extraction from tomato peel by-product containing tomato seed using supercritical carbon dioxide. J Food Eng 108:290–296

    Article  CAS  Google Scholar 

  • Malaman FS, Moraes LAB, West C et al (2011) Supercritical fluid extracts from the Brazilian cherry (Eugenia uniflora L.): relationship between the extracted compounds and the characteristic flavour intensity of the fruit. Food Chem 124:85–92

    Article  CAS  Google Scholar 

  • Mann TS, Babu GDK, Guleria S et al (2011) Comparison of Eucalyptus cinerea essential oils produced by hydrodistillation and supercritical carbon dioxide extraction. Nat Prod Commun 6:107–110

    CAS  Google Scholar 

  • Manosroi A, Ruksiriwanich W, Abe M et al (2010) Biological activities of the rice bran extract and physical characteristics of its entrapment in niosomes by supercritical carbon dioxide fluid. J Supercrit Fluids 54:137–144

    Article  CAS  Google Scholar 

  • Manpong P, Douglas S, Douglas PL et al (2011) Response surface methodology applied to the extraction of phenolic compounds from Jatropha curcas Linn. leaves using supercritical CO2 with a methanol cosolvent. J Food Process Eng 34:1661–1681

    Article  CAS  Google Scholar 

  • Marr R, Gamse T (2000) Use of supercritical fluids for different processes including new developments—a review. Chem Eng Process 39(1):19–28

    Article  CAS  Google Scholar 

  • Martin L, Gonzalez-Coloma A, Diaz CE et al (2011a) Supercritical CO2 extraction of Persea indica: effect of extraction parameters, modelling and bioactivity of its extracts. J Supercrit Fluids 57:120–128

    Article  CAS  Google Scholar 

  • Martin L, Mainar AM, Gonzalez-Coloma A et al (2011b) Supercritical fluid extraction of wormwood (Artemisia absinthium L.). J Supercrit Fluids 56:64–71

    Article  CAS  Google Scholar 

  • Matsuyama K, Yamauchi S, Hirabaru T, Hayashi K, Hattori S, Mishima K (2001) Microencapsulation of proteins with polymer-blend by rapid expansion of supercritical carbon dioxide. Kagaku Kogaku Ronbunshu 27(6):707–713

    Article  CAS  Google Scholar 

  • Mazzutti S, Ferreira SRS, Riehl CAS et al (2012) Supercritical fluid extraction of Agaricus brasiliensis: antioxidant and antimicrobial activities. J Supercrit Fluids 70:48–56

    Article  CAS  Google Scholar 

  • McHugh MA, Yogan TJ (1984) 3-phase solid liquid gas equilibria for 3 carbon-dioxide hydrocarbon solid systems, 2 ethane hydrocarbon solid systems, and 2 ethylene hydrocarbon solid systems. J Chem Eng Data 29(2):112–115

    Article  CAS  Google Scholar 

  • Meireles MA (2007) Extraction of bioactive compounds from Latin American plants. In: Martinez JL (ed) Supercritical fluid extraction of nutraceuticals and bioactive compounds. CRC Press, Boca Raton, pp 243–274

    Chapter  Google Scholar 

  • Mendes R (2007) Supercritical fluid extraction of active compounds from algae. In: Martinez JL (ed) Supercritical fluid extraction of nutraceuticals and bioactive compounds. CRC Press, Boca Raton, pp 189–214

    Chapter  Google Scholar 

  • Meterc D, Petermann M, Weidner E (2007) Extraction of green tea and drying with a high pressure spray process. Chem Ind 61(5):222–228

    Article  CAS  Google Scholar 

  • Meterc D, Petermann M, Weidner E (2008) Drying of aqueous green tea extracts using a supercritical fluid spray process. J Supercrit Fluids 45(2):253–259

    Article  CAS  Google Scholar 

  • Meziani MJ, Pathak P, Desai T, Sun YP (2006) Supercritical fluid processing of nanoscale particles from biodegradable and biocompatible polymers. Ind Eng Chem Res 45(10):3420–3424

    Article  CAS  Google Scholar 

  • Mezzomo N, Mileo BR, Friedrich MT et al (2010) Supercritical fluid extraction of peach (Prunus persica) almond oil: process yield and extract composition. Bioresour Technol 101:5622–5632

    Article  CAS  Google Scholar 

  • Miguel F, Martin A, Gamse T, Cocero MJJ (2006) Supercritical anti solvent precipitation of lycopene—effect of the operating parameters. J Supercrit Fluids 36(3):225–235

    Article  CAS  Google Scholar 

  • Miguel F, Martin A, Mattea F, Cocero MJ (2008) Precipitation of lutein and co-precipitation of lutein and poly-lactic acid with the supercritical anti-solvent process. Chem Eng Process 47(9-10):1594–1602

    Article  CAS  Google Scholar 

  • Missopolinou D, Tsioptsias C, Lambrou C, Panayiotou C (2012) Selective extraction of oxygenated compounds from oregano with sub-critical water. J Sci Food Agric 92:814–820

    Article  CAS  Google Scholar 

  • Moura PM, Prado GHC, Meireles MAA et al (2012) Supercritical fluid extraction from guava (Psidium guajava) leaves: global yield, composition and kinetic data. J Supercrit Fluids 62:116–122

    Article  CAS  Google Scholar 

  • Moyler DA (1993) Extraction of flavours and fragrances with compressed CO2. In: King MB, Bott TR (eds) Extraction of natural products using near-critical solvents. Chapman & Hall, Glasgow, pp 140–183

    Chapter  Google Scholar 

  • Mukhopadhyay M (2007) Processing of spices using supercritical fluids. In: Martinez JL (ed) Supercritical fluid extraction of nutraceuticals and bioactive compounds. CRC Press, Boca Raton, pp 337–366

    Chapter  Google Scholar 

  • Munuklu P, Jansens PJ (2007a) Particle formation of an edible fat (rapeseed 70) using the supercritical melt micronization (ScMM) process. J Supercrit Fluids 40(3):433–442

    Article  CAS  Google Scholar 

  • Munuklu P, Jansens PJ (2007b) Particle formation of edible fats using the supercritical melt micronization process (ScMM). J Supercrit Fluids 43(1):181–190

    Article  CAS  Google Scholar 

  • Mustapa AN, Manan ZA, Azizi CYM et al (2011) Extraction of beta-carotenes from palm oil mesocarp using sub-critical R134a. Food Chem 125:262–267

    Article  CAS  Google Scholar 

  • Nautiyal OP, Tiwari KK (2011) Extraction of dill seed oil (Anethum sowa) using supercritical carbon dioxide and comparison with hydrodistillation. Ind Eng Chem Res 50:5723–5726

    Article  CAS  Google Scholar 

  • Nimet G, Da Silva EA, Palu F et al (2011) Extraction of sunflower (Heliantus annuus L.) oil with supercritical CO2 and subcritical propane: experimental and modeling. Chem Eng J 168:262–268

    Article  CAS  Google Scholar 

  • Ocana-Fuentes A, Arranz-Gutierrez E, Senorans FJ et al (2010) Supercritical fluid extraction of oregano (Origanum vulgare) essentials oils: antiinflammatory properties based on cytokine response on thp-1 macrophages. Food Chem Toxicol 48:1568–1575

    Article  CAS  Google Scholar 

  • Owens JL, Anseth KS, Randolph TW (2003) Mechanism of microparticle formation in the compressed antisolvent precipitation and photopolymerization (CAPP) process. Langmuir 19(9):3926–3934

    Article  CAS  Google Scholar 

  • Palumpitag W, Prasitchoke P, Goto M et al (2011) Supercritical carbon dioxide extraction of marigold lutein fatty acid esters: effects of cosolvents and saponification conditions. Sep Sci Technol 46:605–610

    Article  CAS  Google Scholar 

  • Pan JL, Wang HM, Chen CY et al (2012) Extraction of astaxanthin from Haematococcus pluvialis by supercritical carbon dioxide fluid with ethanol modifier. Eng Life Sci 12:638–647

    Article  CAS  Google Scholar 

  • Park SJ, Yeo SD (2008) Recrystallization of caffeine using gas antisolvent process. J Supercrit Fluids 47(1):85–92

    Article  CAS  Google Scholar 

  • Paviani LC, Dariva C, Marcucci MC et al (2010) Supercritical carbon dioxide selectivity to fractionate phenolic compounds from the dry ethanolic extract of propolis. J Food Process Eng 33:15–27

    Article  Google Scholar 

  • Pederssetti MM, Palu F, da Silva EA et al (2011) Extraction of canola seed (Brassica napus) oil using compressed propane and supercritical carbon dioxide. J Food Eng 102:189–196

    Article  CAS  Google Scholar 

  • Peng D, Robinson DB (1976) New 2-constant equation of state. Ind Eng Chem Fundam 15(1):59–64

    Article  CAS  Google Scholar 

  • Perva-Uzunalic A, Skerget M, Knez Z (2008) Supercritical fluids for producing cocoa powder. In: Proceedings of the 2008 Joint Central European Congress, vol 1, pp 211–217

    Google Scholar 

  • Perva-Uzunalic A, Skerget M, Knez Z (2008) Improvement of food product properties using supercritical fluids. In: Proceedings of the Joint Central European Congress, vol 1, pp 225–231

    Google Scholar 

  • Petrović L, Lepojević Z, Sovilj V et al (2010) Composition of essential oil obtained from tubular, head and ligulate flowers of Calendula officinalis L. by steam distillation of plant material and CO2 extracts. J Essent Oil Res 22:143–146

    Article  Google Scholar 

  • Primozic M, Habulin M, Knez Z (2003) Parameter optimization for the enzymatic hydrolysis of sunflower oil in high-pressure reactors. J Am Oil Chem Soc 80(7):643–646

    Article  CAS  Google Scholar 

  • Quan C, Carlfors J, Turner C (2009) Carotenoids particle formation by supercritical fluid technologies. Chin J Chem Eng 17(2):344–349

    Article  CAS  Google Scholar 

  • Rahimi E, Prado JM, Zahedi G et al (2011) Chamomile extraction with supercritical carbon dioxide: mathematical modeling and optimization. J Supercrit Fluids 56:80–88

    Article  CAS  Google Scholar 

  • Ramandi NF, Najafi NM, Raofie F et al (2011) Central composite design for the optimization of supercritical carbon dioxide fluid extraction of fatty acids from Borago officinalis L. flower. J Food Sci 76:C1262–C1266

    Article  CAS  Google Scholar 

  • Redlich O, Kwong JNS (1949) On the thermodynamics. Chem Rev 44:233

    Article  CAS  Google Scholar 

  • Rehman M, Shekunov BY, York P, Colthorpe P (2001) Solubility and precipitation of nicotinic acid in supercritical carbon dioxide. J Pharm Sci 90(10):1570–1582

    Article  CAS  Google Scholar 

  • Reverchon E, De Marco I (2007) Essential oils extraction and fractionation using supercritical fluids. In: Martinez JL (ed) Supercritical fluid extraction of nutraceuticals and bioactive compounds. CRC Press, Boca Raton, pp 305–336

    Chapter  Google Scholar 

  • Rodrigues M, Peirico N, Matos H, de Azevedo EG, Lobato MR, Almeida AJ (2004) Microcomposites theophylline/hydrogenated palm oil from a PGSS process for controlled drug delivery systems. J Supercrit Fluids 29(1-2):175–184

    Article  CAS  Google Scholar 

  • Romo-Hualde A, Yetano-Cunchillos AI, Gonzalez-Ferrero C et al (2012) Supercritical fluid extraction and microencapsulation of bioactive compounds from red pepper (Capsicum annum L.) by-products. Food Chem 133:1045–1049

    Article  CAS  Google Scholar 

  • Rubiolo P, Sgorbini B, Liberto E et al (2010) Essential oils and volatiles: sample preparation and analysis, a review. Flavour Fragance J 25:282–290

    Article  CAS  Google Scholar 

  • Ruenngam D, Shotipruk A, Pavasant P et al (2012) Selective extraction of lutein from alcohol treated Chlorella vulgaris by supercritical CO2. Chem Eng Technol 35:255–260

    Article  CAS  Google Scholar 

  • Saini R, Jaitak V, Guleria S et al (2012) Comparison of headspace analysis of volatile constituents with gc-ms analysis of hydrodistilled and supercritical fluid extracted oil of Capillipedium parviflorum. J Essent Oil Res 24:315–320

    Article  CAS  Google Scholar 

  • Sajilata MG, Bule MV, Chavan P et al (2010) Development of efficient supercritical carbon dioxide extraction methodology for zeaxanthin from dried biomass of Paracoccus zeaxanthini faciens. Sep Purif Technol 71:173–177

    Article  CAS  Google Scholar 

  • Sala S, Elizondo E, Moreno E, Calvet T, Cuevas-Diarte MA, Ventosa N, Veciana J (2010) Kinetically driven crystallization of a pure polymorphic phase of stearic acid from CO2-expanded solutions. Cryst Growth Des 10(3):1226–1232

    Article  CAS  Google Scholar 

  • Salinas-Hernandez R, Ruiz-Trevino FA, Ortiz-Estrada CH, Luna-Barcenas G, Prokhorov Y, Alvarado JFJ, Sanchez IC (2009) Chitin microstructure formation by rapid expansion techniques with supercritical carbon dioxide. Ind Eng Chem Res 48(2):769–778

    Article  CAS  Google Scholar 

  • Sarfraz A, Simo A, Fenger R, Christen W, Rademann K, Panne U, Emmerling F (2012) Morphological diversity of caffeine on surfaces: needles and hexagons. Cryst Growth Des 12(2):583–588

    Article  CAS  Google Scholar 

  • Satvati HR, Lotfollahi MN (2011) Effects of extraction temperature, extraction pressure and nozzle diameter on micronization of cholesterol by RESS process. Powder Technol 210(2):109–114

    Article  CAS  Google Scholar 

  • Shan B, Xie JH, Zhu JH et al (2012) Ethanol modified supercritical carbon dioxide extraction of flavonoids from Momordica charantia L. and its antioxidant activity. Food Bioprod Process 90:579–587

    Article  CAS  Google Scholar 

  • Sheu SR, Jang MJ, Wang CC (2008) A study of manufacturing micro-nano particles of green tea by rapid expansion of supercritical solutions method. In: ASME, 2008, 19th international conference on design theory and methodology/first international conference on micro and nano systems, vol 3 Part A and B, pp 687–691

    Google Scholar 

  • Shi J, Yi C, Ye XQ et al (2010) Effects of supercritical CO2 fluid parameters on chemical composition and yield of carotenoids extracted from pumpkin. LWT Food Sci Technol 43:39–44

    Article  CAS  Google Scholar 

  • Skerget M, Novak-Pintaric Z, Knez Z et al (2002) Estimation of solid solubilities in supercritical carbon dioxide: Peng-Robinson adjustable binary parameters in the near critical region. Fluid Phase Equilib 203(1–2):111–132

    Article  CAS  Google Scholar 

  • Soave G (1972) Equilibrium constants from a modified Redlich-Kwong equation of state. Chem Eng Sci 27(6):1197

    Article  CAS  Google Scholar 

  • Soler-Rivas C, Marin FR, Santoyo S et al (2010) Testing and enhancing the in vitro bioaccessibility and bioavailability of Rosmarinus officinalis extracts with a high level of antioxidant abietanes. J Agric Food Chem 58:1144–1152

    Article  CAS  Google Scholar 

  • Stahl E, Quirin KW, Gerard D (1987) Verdichtete Gase zur Extraktion und Raffination. Springer, Berlin, pp 82–225

    Book  Google Scholar 

  • Subra P, Berroy P, Saurina J, Domingo C (2004) Influence of expansion conditions on the characteristics of cholesterol crystals analyzed by statistical design. J Supercrit Fluids 31(3):313–322

    Article  CAS  Google Scholar 

  • Surovtsev NV, Adichtchev SV, Malinovsky VK, Ogienko AG, Drebushchak VA, Manakov AY, Ancharov AI, Yunoshev AS, Boldyreva EV (2012) Glycine phases formed from frozen aqueous solutions: revisited. J Chem Phys 137(6):065103

    Article  CAS  Google Scholar 

  • Takeuchi TM, Rubano ML, Meireles MAA (2010) Characterization and functional properties of macela (Achyrocline satureioides) extracts obtained by supercritical fluid extraction using mixtures of CO2 plus ethanol. Food Bioprocess Technol 3:804–812

    Article  CAS  Google Scholar 

  • Tang SK, Qin CR, Wang HG et al (2011) Study on supercritical extraction of lipids and enrichment of dha from oil-rich microalgae. J Supercrit Fluids 57:44–49

    Article  CAS  Google Scholar 

  • Tavana A, Randolph AD (1989) Manipulating solids CSD in a supercritical fluid crystallizer—CO2-benzoic acid. AIChE J 35(10):1625–1630

    Article  CAS  Google Scholar 

  • Taylor LT (2009) Supercritical fluid chromatography for the 21st century. J Supercrit Fluids 47:566–573

    Article  CAS  Google Scholar 

  • Temelli F (2009) Perspectives on supercritical fluid processing of fats and oils. J Supercrit Fluids 47:583–590

    Article  CAS  Google Scholar 

  • Temelli F, Saldaña MDA, Moquin PHL et al (2007) Supercritical fluid extraction of specialty oils. In: Martinez JL (ed) Supercritical fluid extraction of nutraceuticals and bioactive compounds. CRC Press, Boca Raton, pp 51–102

    Chapter  Google Scholar 

  • Tom JW, Debenedetti PG, Jerome R (1994) Precipitation of poly(l-lactic acid) and composite poly(l-lactic acid)—pyrene particles by rapid expansion of supercritical solutions. J Supercrit Fluids 7(1):9–29

    Article  CAS  Google Scholar 

  • Uribe JAR, Perez JIN, Kauil HC et al (2011) Alcocer, extraction of oil from chia seeds with supercritical CO2. J Supercrit Fluids 56:174–178

    Article  CAS  Google Scholar 

  • Vargas CE, Mendes MF, Azevedo DA et al (2010) Extraction of the essential oil of abajeru (Chrysobalanus icaco) using supercritical CO2. J Supercrit Fluids 54:171–177

    Article  CAS  Google Scholar 

  • Varona S, Martin A, Cocero MJ (2011) Liposomal incorporation of Lavandin essential oil by a thin-film hydration method and by particles from gas-saturated solutions. Ind Eng Chem Res 50(4):2088–2097

    Article  CAS  Google Scholar 

  • Venkatachallam SKT, Pattekhan H, Divakar S et al (2010) Chemical composition of Nigella sativa L. seed extracts obtained by supercritical carbon dioxide. J Food Sci Technol 47:598–605

    Article  CAS  Google Scholar 

  • Vezzu K, Bertucco A, Lucien FP (2008) Solid-liquid equilibria of multicomponent lipid mixtures under CO2 pressure: measurement and thermodynamic modeling. AIChE J 54(9):2487–2494

    Article  CAS  Google Scholar 

  • Vezzu K, Borin D, Bertucco A, Bersani S, Salmaso S, Caliceti P (2010) Production of lipid microparticles containing bioactive molecules functionalized with PEG. J Supercrit Fluids 54(3):328–334

    Article  CAS  Google Scholar 

  • Wang LZ, Yang B, Yan BL et al (2012) Supercritical fluid extraction of astaxanthin from Haematococcus pluvialis and its antioxidant potential in sunflower oil. Innovative Food Sci Emerg Technol 13:120–127

    Article  CAS  Google Scholar 

  • Weidner E (2009) High pressure micronization for food applications. J Supercrit Fluids 47(2009):556–565

    Article  CAS  Google Scholar 

  • Weidner E, Knez Z, Novak Z (1995) Process for the production of particles or powders. WO Patent 9,521,688, 17 Aug 1995

    Google Scholar 

  • Weidner E, Wiesmet V, Knez Z et al (1997) Phase equilibrium (solid-liquid-gas) in polyethyleneglycol-carbon dioxide systems. J Supercrit Fluids 10(3):139–147

    Article  CAS  Google Scholar 

  • Wubbolts FE, Bruinsma OSL, van Rosmalen GM (2005) Measurement and modelling of the solubility of solids in mixtures of common solvents and compressed gases. J Supercrit Fluids 32(1-3):79–87

    Article  CAS  Google Scholar 

  • Xia EQ, Deng GF, Guo YJ et al (2010) Biological activities of polyphenols from grapes. Int J Mol Sci 11:622–646

    Article  CAS  Google Scholar 

  • Xu XA, Dong J, Mu XF et al (2011) Supercritical CO2 extraction of oil, carotenoids, squalene and sterols from lotus (Nelumbo nucifera Gaertn) bee pollen. Food Bioprod Process 89:47–52

    Article  CAS  Google Scholar 

  • Yang SA, Lee EJ, Choi HD et al (2010) Anti-allergy effect of marc from silver vine (Actinidia polygama) prepared by supercritical fluid extraction. Food Sci Biotechnol 19:1309–1316

    Article  Google Scholar 

  • Yesil-Celiktas O, Cetin-Uyanikgil EO (2012) In vitro release kinetics of polycaprolactone encapsulated plant extract fabricated by supercritical antisolvent process and solvent evaporation method. J Supercrit Fluids 62:219–225

    Article  CAS  Google Scholar 

  • Yu J, Wang J, Liu CM et al (2012) Application of response surface methodology to optimise supercritical carbon dioxide extraction of oil from rapeseed (Brassica napus L.). Int J Food Sci Technol 47:1115–1121

    Article  CAS  Google Scholar 

  • Zhang S, Zu YG, Fu YJ et al (2010) Supercritical carbon dioxide extraction of seed oil from yellow horn (Xanthoceras sorbifolia Bunge.) and its anti-oxidant activity. Bioresour Technol 101:2537–2544

    Article  CAS  Google Scholar 

  • Zu YG, Liu XL, Fu YJ et al (2010) Chemical composition of the SFE-CO2 extracts from Cajanus cajan (L.) huth and their antimicrobial activity in vitro and in vivo. Phytomedicine 17:1095–1101

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This chapter was produced within the framework of the operation entitled “Centre of Open innovation and ResEarch of University of Maribor (CORE@UM).” The operation is co-funded by the European Regional Development Fund and conducted within the framework of the Operational Programme for Strengthening Regional Development Potentials for the period 2007–2013, development priority 1: “Competitiveness of companies and research excellence,” priority axis 1.1: “Encouraging competitive potential of enterprises and research excellence.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Željko Knez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Knez, Ž. (2016). Food Processing Using Supercritical Fluids. In: Nedović, V., Raspor, P., Lević, J., Tumbas Šaponjac, V., Barbosa-Cánovas, G. (eds) Emerging and Traditional Technologies for Safe, Healthy and Quality Food. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-319-24040-4_20

Download citation

Publish with us

Policies and ethics