Skip to main content

Role of the Compressibility of Water and of Nonlinear Effects in the Formation of Tsunami Waves

  • Chapter
  • First Online:
Physics of Tsunamis

Abstract

The necessity is substantiated for taking into account the compressibility of water in describing behavior of water column in tsunami source. Within the framework of linear potential theory of a compressible liquid in a basin of fixed depth, the general analytical solution is constructed for 2D and quasi-3D (cylindrical symmetry) problems of the generation of acoustic-gravity waves by bottom deformations of small amplitudes. Manifestations of compressibility of the water column in the problem of tsunami generation are studied, making use of the example of model bottom deformation laws (piston, membrane, and running displacements). The main difference between the behavior of a compressible water column as compared to an incompressible model medium is shown to consist in the formation of elastic oscillations exhibiting significant amplitudes and a discrete spectrum. Characteristic features of the dynamics of acoustic-gravity waves in a basin of variable depth are described. Records of ocean bottom pressure gauges and seismometers are used for analyzing manifestations of the 2003 Tokachi-Oki and the 2011 Tohoku-Oki tsunamigenic earthquakes. The mechanism is considered of tsunami formation, related to nonlinear energy transfer from “high-frequency” forced or elastic oscillations of the water column to “low-frequency” gravitational waves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdolali, A., Kirby, J.T., Bellotti, G.: Depth-integrated equation for hydro-acoustic waves with bottom damping. J. Fluid Mech. 766, R1 (2015)

    Article  Google Scholar 

  • Alexeev, A.S., Gusyakov, V.K.: Numerical simulation of the process of tsunami wave and seismoacoustic wave excitation during earthquakes in the ocean. In: Works of IV All-Union Symposium on Wave Diffraction and Propagation (in Russian), vol. 2, pp. 194–197 (1973)

    Google Scholar 

  • Balanche, A., Guennou, C., Goslin, J., Mazoyer, C.: Generation of hydroacoustic signals by oceanic subseafloor earthquakes: a mechanical model. Geophys. J. Int. 177, 476–480 (2009)

    Article  Google Scholar 

  • Bernard, E., Meinig, C.: History and future of deep-ocean tsunami measurements. In: Proceedings of Oceans’11 MTS/IEEE, Kona, No. 6106894, 7 pp. IEEE, Piscataway, 19–22 September 2011

    Google Scholar 

  • Bolshakova, A., Inoue, S., Kolesov, S., Matsumoto, H., Nosov, M., Ohmachi, T.: Hydroacoustic effects in the 2003 Tokachi-Oki tsunami source. Russ. J. Earth Sci. 12, ES2005 (2011). doi:10.2205/2011ES000509

    Google Scholar 

  • Brekhovskikh, L.M. (ed.): Acoustics of the Ocean (in Russian). Nauka, Moscow (1974)

    Google Scholar 

  • Brekhovskikh, L.M., Goncharov, V.V.: Introduction to the Mechanics of Continuous Media (as applied to wave theory) (in Russian). Nauka, Moscow (1982)

    Google Scholar 

  • Brekhovskikh, L.M., Lysanov, I.P.: Fundamentals of Ocean Acoustics. Springer Science & Business Media, New York (2003)

    Google Scholar 

  • Boorymskaia, R.N., Levin, B.W., Soloviev, S.L.: Kinematical criterion for a submarine earthquake to be tsunamigenic (in Russian). DAN SSSR 261(6), 1325–1329 (1981)

    Google Scholar 

  • Chierici, F., Pignagnoli, L., Embriaco, D.: Modeling of the hydroacoustic signal and tsunami wave generated by seafloor motion including a porous seabed. J. Geophys. Res.: Oceans 115(C3), 1978–2012 (2010)

    Article  Google Scholar 

  • Dotsenko, S.F.: Influence of residual displacements of ocean bottom on the efficiency of directed tsunami wave generation. Izv. AN SSSR, FAO (in Russian), 31(4), 570–576 (1995)

    Google Scholar 

  • Dotsenko, S.F.: Excitation of tsunami waves during oscillations of a section of the bottom. Izv. AN SSSR, FAO (in Russian), 32(2), 264–270 (1996)

    Google Scholar 

  • Ewing, W.M., Tolstoy, I., Press, F.: Proposed use of the T phase in tsunami warning systems. Bull. Seismol. Soc. Am. 40, 53–58 (1950)

    Google Scholar 

  • Filloux, J.H.: Pressure fluctuations on the open-ocean floor off the Gulf of California: tides, earthquakes, tsunamis. J. Phys. Oceanogr. 13(5), 783–796 (1983)

    Article  Google Scholar 

  • Garber, M.R.: Improved model for long-period wave excitation in ocean and atmosphere by underwater earthquakes (in Russian). DVNII Transactions, No. 103, pp. 14–18. Gidrometeoizdat, Leningrad (1984)

    Google Scholar 

  • Gisler, G.R.: Tsunami simulations. Annu. Rev. Fluid Mech. 40, 71–90 (2008)

    Article  Google Scholar 

  • Gusyakov, V.K.: Excitation of tsunami waves and of oceanic Rayleigh waves during a submarine earthquake. In: Mathematical Problems of Geophysics (in Russian). Public Department of Computation Center, SB RAS USSR, Novosibirsk, No. 3, pp. 250–272 (1972)

    Google Scholar 

  • Gusyakov, V.K.: On the relationship between a tsunami wave and the source parameters of the underwater earthquake. In: Mathematical Problems of Geophysics (in Russian), No. 5, part I, pp. 118–140. Public Department of Computation Center, SB RAS USSR, Novosibirsk (1974)

    Google Scholar 

  • Hammack, J.L.: A note on tsunamis: their generation and propagation in an ocean of uniform depth. J. Fluid Mech. 60(04), 769–799 (1973)

    Article  Google Scholar 

  • Heidarzadeh, M., Satake, K.: Waveform and spectral analyses of the 2011 Japan tsunami records on tide gauge and DART stations across the Pacific Ocean. Pure Appl. Geophys. 170(6–8), 1275–1293 (2013)

    Article  Google Scholar 

  • Jaque, V.M., Soloviev, S.L.: Remote registration of tsunami type weak waves on the shelf of the Kuril Islands. Dokl. Akad. Nauk USSR 198(4), 816–817 (1971) (in Russian)

    Google Scholar 

  • Joseph, A.: Tsunamis: Detection, Monitoring, and Early-Warning Technologies. Academic Press, Burlington (2011)

    Google Scholar 

  • Kadri, U., Stiassnie, M.: Acoustic gravity waves interacting with the shelf break. J. Geophys. Res.: Oceans 117(C3), 1978–2012 (2012)

    Article  Google Scholar 

  • Kadykov, I.F.: The Acoustics of Submarine Earthquakes (in Russian). Nauka, Moscow (1986)

    Google Scholar 

  • Kadykov, I.F.: Submarine Low-Frequency Acoustic Noise of the Ocean (in Russian). Editorial URSS, Moscow (1999)

    Google Scholar 

  • Kajiura, K.: Tsunami source, energy and directivity of wave radiation. Bull. Earthq. Res. Inst. Tokyo Univ. 48(5), 835–869 (1970)

    Google Scholar 

  • Kanamori, H.: The energy release in great earthquakes. J. Geophys. Res. 82(20), 2981–2987 (1977)

    Article  Google Scholar 

  • Kaneda, Y.: The advanced ocean floor real time monitoring system for mega thrust earthquakes and tsunamis-application of DONET and DONET2 data to seismological research and disaster mitigation. In: OCEANS, pp. 1–6. IEEE, September 2010

    Google Scholar 

  • Koketsu, K., Hikima, K., Miyazaki, S., Ide, S.: Joint inversion of strong motion and geodetic data for the source process of the 2003 Tokachi-Oki, Hokkaido, earthquake. Earth Planets Space 56(3), 329–334 (2004)

    Article  Google Scholar 

  • Lacombe, H.: Cours d’océanographie physique: Théories de la circulation générale. Houles et vagues. Gauthier-Villars, Paris (1965)

    Google Scholar 

  • Landau, L.D., Lifshitz, E.M.: Fluid Mechanics, 2nd edn. Pergamon Press, London (1987)

    Google Scholar 

  • Levin, B.W.: On the source and hydromechanics of an underwater earthquake (in Russian). In: Tsunami Wave Propagation and Runup on Shore, pp. 5–10. Nauka, Moscow (1981)

    Google Scholar 

  • Li, W., Yeh, H., Hirata, K., Baba, T.: Ocean-bottom pressure variations during the 2003 Tokachi-Oki Earthquake. In: Lynett, P. (ed.) Nonlinear Wave Dynamics, pp. 109–126. World Scientific Publishing Co., Singapore (2009)

    Chapter  Google Scholar 

  • Lysanov, Y.P.: Trapping of hydroacoustic waves generated by deep ocean earthquakes in an underwater sound channel. Acoust. Phys. 43, 79–83 (1997)

    Google Scholar 

  • Maeda, T., Furumura, T.: FDM simulation of seismic waves, ocean acoustic waves, and tsunamis based on tsunami-coupled equations of motion. Pure Appl. Geophys. 170(1–2), 109–127 (2013)

    Article  Google Scholar 

  • Maeda, T., Furumura, T., Noguchi, S., Takemura, S., Sakai, S.I., Shinohara, M., Lee, S.J.: Seismic- and tsunami-wave propagation of the 2011 Off the Pacific Coast of Tohoku Earthquake as inferred from the tsunami-coupled finite-difference simulation. Bull. Seismol. Soc. Am. 103(2B), 1456–1472 (2013)

    Article  Google Scholar 

  • Marchuk, An.G., Chubarov, L.B., Shokin, Yu.I.: Numerical Simulation of Tsunami Waves (in Russian). Nauka, Novosibirsk (1983)

    Google Scholar 

  • Matsumoto, H.: Advances for Tsunami Measurement Technologies and its Applications. INTECH Open Access Publisher (2011)

    Google Scholar 

  • Matsumoto, H., Kaneda, Y.: Some features of bottom pressure records at the 2011 Tohoku earthquake-Interpretation of the far-field DONET data. In: Proceedings of the 11th SEGJ International Symposium, Yokohama, Japan, vol. 2013, pp. 493–496 (2013). doi:10.1190/segj112013-124

  • Mikada, H., Mitsuzawa, K., Matsumoto, H., Watanabe, T., Morita, S., Otsuka, R., Sugioka, H., Baba, T., Araki, E., Suyehiro, K.: New discoveries in dynamics of an M8 earthquake—phenomena and their implications from the 2003 Tokachi-Oki earthquake using a long term monitoring cabled observatory. Tectonophysics 426, 95–105 (2006)

    Article  Google Scholar 

  • Nikiforov, A.F., Uvarov, V.B.: Special Functions of Mathematical Physics (in Russian). Nauka, Moscow (1984)

    Google Scholar 

  • Nosov, M.A.: A model for tsunami generation by bottom movements incorporating water compressibility. Volcanol. Seismol. 20, 731–741 (1999)

    Google Scholar 

  • Nosov, M.A.: On the tsunami generation in the compressible ocean by vertical bottom displacements. Izv. Atmos. Ocean. Phys. 36(5), 718–726 (2000)

    Google Scholar 

  • Nosov, M.A., Grigorieva, S.S.: Tsunami forecasting based on deepwater-station data. Mosc. Univ. Phys. Bull. 70(4), 326–332 (2015)

    Google Scholar 

  • Nosov, M.A., Kolesov, S.V.: Non-linear mechanism of tsunami generation in a compressible ocean. In: Proceedings of the International Workshop Local Tsunami Warning and Mitigation, Moscow, pp. 107–114 (2002)

    Google Scholar 

  • Nosov, M.A., Kolesov, S.V.: Tsunami generation in compressible ocean of variable depth. In: Yalciner, A.C., Pelinovsky, E., et al. (eds.) Submarine Landslides and Tsunamis, pp. 129–137. Kluwer, Boston (2003)

    Chapter  Google Scholar 

  • Nosov, M.A., Kolesov, S.V.: Nonlinear tsunami generation mechanism in compressible ocean (in Russian). Mosc. Univ. Phys. Bull. no. 4 (2005)

    Google Scholar 

  • Nosov, M.A., Kolesov, S.V.: Elastic oscillations of water column in the 2003 Tokachi-Oki tsunami source: in-situ measurements and 3-D numerical modelling. Nat. Hazards Earth Syst. Sci. 7, 243–249 (2007)

    Article  Google Scholar 

  • Nosov, M.A., Sammer, K.: Tsunami excitation by a moving bottom displacement in compressible water. Mosc. Univ. Phys. Bull. 53(6), 67–70 (1998)

    Google Scholar 

  • Nosov, M.A., Shelkovnikov, N.K.: The excitation of dispersive tsunami waves by piston and membrane floor motions. Izv. Atmos. Ocean. Phys. 33(1), 133–139 (1997)

    Google Scholar 

  • Nosov, M.A., Skachko, S.N.: Nonlinear tsunami generation mechanism. Nat. Hazards Earth Syst. Sci. 1, 251–253 (2001)

    Google Scholar 

  • Nosov, M.A., Kolesov, S.V., Ostroukhova, A.V., Alekseev, A.B., Levin, B.W.: Elastic oscillations of the water layer in a tsunami source. Dokl. Earth Sci. 404(7), 1097–1100 (2005)

    Google Scholar 

  • Nosov, M.A., Kolesov, S.V., Denisova, A.V., Alekseev, A.B., Levin, B.W.: On the near-bottom pressure variations in the region of the 2003 Tokachi-Oki tsunami source. Oceanology 47(1), 26–32 (2007)

    Article  Google Scholar 

  • Nosov, M.A., Kolesov, S.V., Denisova, A.V.: Contribution of nonlinearity in tsunami generated by submarine earthquake. Adv. Geosci. 14, 141–146 (2008)

    Article  Google Scholar 

  • Nosov, M.A., Moshenceva, A.V., Kolesov, S.V.: Horizontal motions of water in the vicinity of a tsunami source. Pure Appl. Geophys. 170(9–10), 1647–1660 (2013)

    Article  Google Scholar 

  • Nosov, M.A., Sementsov, K.A., Kolesov, S.V., Matsumoto, H., Levin, B.W.: Recording of gravity waves formed in the ocean by surface seismic waves during the earthquake of March 11, 2011, off the coast of Japan. In: Doklady Earth Sciences, vol. 461, no. 2, pp. 408–413. Pleiades Publishing April 2015

    Google Scholar 

  • Novikova, L.E., Ostrovsky, L.A.: On the acoustic mechanism of tsunami wave excitation (in Russian). Oceanology 22(5), 693–697 (1982)

    Google Scholar 

  • Ohmachi, T., Inoue, S.: Dynamic tsunami generation process observed in the 2003 Tokachi-Oki, Japan, earthquake. Adv. Geosci. 18, 159–168 (2010)

    Google Scholar 

  • Ohmachi, T., Tsukiyama, H., Matsumoto, H.: Simulation of tsunami induced by dynamic displacement of seabed due to seismic faulting. Bull. Seismol. Soc. Am. 91(6), 1898–1909 (2001)

    Article  Google Scholar 

  • Okal, E.A.: T Waves from the 1998 Papua New Guinea earthquake and its aftershocks: timing the tsunamigenic slump. Pure Appl. Geophys. 160, 1843–1863 (2003)

    Article  Google Scholar 

  • Okal, E.A., Alasset, P.J., Hyvernaud, O., Schindele, F.: The deficient T waves of tsunami earthquakes. Geophys. J. Int. 152, 416–432 (2003)

    Article  Google Scholar 

  • Panza, F.G., Romanelli, F., Yanovskaya, T.B.: Synthetic tsunami mareograms for realistic oceanic models. Geophys. J. Int. 141, 498–508 (2000)

    Article  Google Scholar 

  • Pelinovsky, E.N.: Hydrodynamics of Tsunami Waves (in Russian). Institute of Applied Physics. RAS, Nizhnii Novgorod (1996)

    Google Scholar 

  • Pod’yapolsky, G.S.: Excitation of a long gravitational wave in the ocean by a seismic source inside the crust (in Russian). Izv. RAS Earth Phys. no. 1 (1968a)

    Google Scholar 

  • Pod’yapolsky, G.S.: On the relationship between a tsunami wave and the underground source, that generated it (in Russian). In: The Tsunami Problem. Nauka, Moscow (1968b)

    Google Scholar 

  • Pod’yapolsky, G.S.: Tsunami excitation by an earthquake. In: Methods for Calculating Tsunami Rise and Propagation (in Russian), pp. 30–87. Nauka, Moscow (1978)

    Google Scholar 

  • Rabinovich, A.B.: Tsunami observations in the open ocean. Izv. Atmos. Ocean. Phys. 50(5), 445–458 (2014)

    Article  Google Scholar 

  • Sammarco, P., Cecioni, C., Bellotti, G., Abdolali, A.: Depth-integrated equation for large-scale modelling of low-frequency hydroacoustic waves. J. Fluid Mech. 722, R6 (2013)

    Article  Google Scholar 

  • Sekerzh-Zen’kovich, S.Ya., Zakharov, D.D., Timokhina, A.O., Shingareva, I.K.: Tsunami wave excitation in an inhomogeneous ocean by seismic-type sources inside the Earth’s crust (in Russian). In: Collection Interaction in the Lithosphere–Hydrosphere–Atmosphere System, vol. 2. pp. 233–240. Publishing Department of MSU Physics. Faculty, Moscow (1999)

    Google Scholar 

  • Selezov, I.T., Tkachenko, V.A., Yakovlev, V.V.: On the influence of water compressibility on tsunami wave generation (in Russian). In: Processes of Tsunami Excitation and Propagation, pp. 36–40. Publishing house of USSR AS, Moscow (1982)

    Google Scholar 

  • Sells, C.C.H.: The effect of a sudden change of shape of the bottom of a slightly compressed ocean. Philos. Trans. R. Soc. Lond. (A) no. 1092, 495–528 (1965)

    Google Scholar 

  • Soloviev, S.L.: The tsunami problem and its significance for Kamchatka and the Kuril islands (in Russian). In: The Tsunami Problem, pp. 7–50. Nauka, Moscow (1968)

    Google Scholar 

  • Soloviev, S.L., Go, C.N.: Catalogue of Tsunamis on the Western Coast of the Pacific Ocean (173–1968) (in Russian). Nauka, Moscow (1974)

    Google Scholar 

  • Soloviev, S.L., Go, C.N.: Catalogue of Tsunamis on the Eastern Coast of the Pacific Ocean (1513–1968) (in Russian). Nauka, Moscow (1975)

    Google Scholar 

  • Soloviev, S.L., Voronin, P.S., Voronina, S.I.: Seismic hydroacoustic data on the T wave (review of the literature) (in Russian). In: The Tsunami Problem, pp. 142–173. Nauka, Moscow (1968)

    Google Scholar 

  • Soloviev, S.L., Belavin, Yu.S., Kadykov, I.F., Ton Il’, U.: Registration of T phases in earthquake signals in the north-western part of the Pacific Ocean (in Russian). Volcanol. Seismol. no.1, 60–69 (1980)

    Google Scholar 

  • Soloviev, S.L., Go, C.N., Kim, Kh.S., et al.: Tsunamis in the Mediterranean Sea, 2000 B.C—1991 A.D. (in Russian). Nauchnyi mir, Moscow (1997)

    Google Scholar 

  • Stiassnie, M.: Tsunamis and acoustic-gravity waves from underwater earthquakes. J. Eng. Math. 67(1–2), 23–32 (2010)

    Article  Google Scholar 

  • Tanioka, Y., Nishimura, Y., Hirakawa, K., Imamura, F., Abe, I., Abe, Y., Masaka, S.: Tsunami run-up heights of the 2003 Tokachi-Oki earthquake. Earth Planets Space 56(3), 359–365 (2004)

    Article  Google Scholar 

  • Tikhonov, A.N., Samarsky, A.A.: Equations of Mathematical Physics (in Russian). Publishing house of Moscow University, Moscow (1999)

    Google Scholar 

  • Tolstoy, I., Clay, C.S.: Ocean Acoustics—Theory and Experiment in Underwater Sound, 2nd edn. American Institute of Physics, New York (1987)

    Google Scholar 

  • Tsushima, H., Hino, R., Fujimoto, H., et al.: Near-field tsunami forecasting from cabled ocean bottom pressure data. J. Geophys. Res. 114, B06309 (2009)

    Article  Google Scholar 

  • Tsushima, H., Hirata, K., Hayashi, Y., et al.: Near-field tsunami forecasting using offshore tsunami data from the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planets Space 63, 821 (2011)

    Article  Google Scholar 

  • Walker, D.A., McCreery, C.S., Hiyoshi, Y.: T-phase spectra, seismic moment and tsunamigenesis. Bull. Seismol. Soc. Am. 82, 1275–1305 (1992)

    Google Scholar 

  • Watanabe, O., Matsumoto, H., Sugioka, H., Mikada, H., Suyehiro, K., Otsuka, R.: Offshore monitoring system records recent earthquake off Japan’s northernmost island. Eos Trans. AGU 85(2), 14–14 (2004)

    Article  Google Scholar 

  • Yanushkauskas, A.I.: Cauchy-Poisson theory for a compressible liquid (in Russian). In: Tsunami Wave Propagation and Runup on Shore, pp. 41–55. Nauka, Moscow (1981)

    Google Scholar 

  • Zhmur, V.V.: Surface phenomena above the sources of strong underwater earthquakes. Tsunami studies (in Russian), no. 2, pp. 62–71 (1987)

    Google Scholar 

  • Zvolinsky, N.V.: On the seismic mechanism of tsunami wave generation. Izv. AN SSSR, Ser. Earth Phys. (in Russian), no. 3, 3–15 (1986)

    Google Scholar 

  • Zvolinsky, N.V., Nikitin, I.S., Sekerzh-Zen’kovich, S.Ya.: Generation of tsunami and Rayleigh waves by a harmonic expansion center. Izv. AN SSSR, Ser. Earth Phys. (in Russian), no. 2, 34–44 (1991)

    Google Scholar 

  • Zvolinsky, N.V., Karpov, I.I., Nikitin, I.S., Sekerzh-Zen’kovich, S.Ya.: Generation of tsunami and Rayleigh waves by a harmonic two-dimensional rotation center. Izv. AN SSSR, Ser. Earth Phys. (in Russian), no. 9, 29–33 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris W. Levin .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Levin, B.W., Nosov, M.A. (2016). Role of the Compressibility of Water and of Nonlinear Effects in the Formation of Tsunami Waves. In: Physics of Tsunamis. Springer, Cham. https://doi.org/10.1007/978-3-319-24037-4_4

Download citation

Publish with us

Policies and ethics