Skip to main content

Automatic Construction of Domain Specific Sentiment Lexicons for Hungarian

Part of the Lecture Notes in Computer Science book series (LNAI,volume 9302)

Abstract

Sentiment analysis has become an actively researched area recently, which aims to detect positive and negative opinions in texts. A good indicator for the polarity of a given text is the number of words in it that have positive or negative meanings. The so called sentiment lexicons are lists containing words together with their polarities. In this paper we present methods for creating sentiment lexicons automatically. We use these lexicons in sentiment analysis tasks on general and domain-specific Hungarian corpora. We compare the efficiency of sentiment lexicons from different domains and show the importance of using domain-specific sentiment lexicons for different sentiment analysis tasks.

Keywords

  • Sentiment analysis
  • Sentiment lexicon
  • Natural language processing

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-24033-6_21
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-24033-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baccianella, S., Esuli, A., Sebastiani, F.: SentiWordNet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining. In: Proceedings of the Seventh International Conference on Language Resources and Evaluation, LREC 2010 (2010)

    Google Scholar 

  2. Wilson, T., Wiebe, J., Hoffmann, P.: Recognizing contextual polarity in phrase-level sentiment analysis. In: Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing, pp. 347–354. Association for Computational Linguistics (2005)

    Google Scholar 

  3. Miháltz, M.: OpinHuBank: szabadon hozzáférhető annotált korpusz magyar nyelvű véleményelemzéshez. In: IX. Magyar Számítógépes Nyelvészeti Konferencia, pp. 343–345 (2013)

    Google Scholar 

  4. Liu, B.: Sentiment analysis and opinion mining. Synthesis Lectures on Human Language Technologies 5(1), 1–167 (2012)

    MathSciNet  CrossRef  Google Scholar 

  5. Turney, P.D., Littman, M.L.: Measuring praise and criticism: Inference of semantic orientation from association. ACM Transactions on Information Systems (TOIS) 21(4), 315–346 (2003)

    CrossRef  Google Scholar 

  6. Miháltz, M., Hatvani, C., Kuti, J., Szarvas, G., Csirik, J., Prószéky, G., Váradi, T.: Methods and results of the Hungarian WordNet project. In: Proceedings of the Fourth Global WordNet Conference, GWC 2008. Citeseer (2008)

    Google Scholar 

  7. Brown, P.F., Desouza, P.V., Mercer, R.L., Pietra, V.J.D., Lai, J.C.: Class-based n-gram models of natural language. Computational Linguistics 18(4), 467–479 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Hangya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Hangya, V. (2015). Automatic Construction of Domain Specific Sentiment Lexicons for Hungarian. In: Král, P., Matoušek, V. (eds) Text, Speech, and Dialogue. TSD 2015. Lecture Notes in Computer Science(), vol 9302. Springer, Cham. https://doi.org/10.1007/978-3-319-24033-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24033-6_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24032-9

  • Online ISBN: 978-3-319-24033-6

  • eBook Packages: Computer ScienceComputer Science (R0)