Abstract
Using multimedia identification tools is considered as one of the most promising solutions to help bridging the taxonomic gap and build accurate knowledge of the identity, the geographic distribution and the evolution of living species. Large and structured communities of nature observers (e.g. eBird, Xeno-canto, Tela Botanica, etc.) as well as big monitoring equipments have actually started to produce outstanding collections of multimedia records. Unfortunately, the performance of the state-of-the-art analysis techniques on such data is still not well understood and is far from reaching the real world’s requirements. The LifeCLEF lab proposes to evaluate these challenges around 3 tasks related to multimedia information retrieval and fine-grained classification problems in 3 living worlds. Each task is based on large and real-world data and the measured challenges are defined in collaboration with biologists and environmental stakeholders in order to reflect realistic usage scenarios. This paper presents more particularly the 2015 edition of LifeCLEF. For each of the three tasks, we report the methodology and the data sets as well as the raw results and the main outcomes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
MAED 2012: Proceedings of the 1st ACM International Workshop on Multimedia Analysis for Ecological Data. ACM, New York (2012). 433127
Proc. of the first workshop on Machine Learning for Bioacoustics (2013)
Aptoula, E., Yanikoglu, B.: Morphological features for leaf based plant recognition. In: Proc. IEEE Int. Conf. Image Process., Melbourne, Australia, p. 7 (2013)
Backes, A.R., Casanova, D., Bruno, O.M.: Plant leaf identification based on volumetric fractal dimension. International Journal of Pattern Recognition and Artificial Intelligence 23(6), 1145–1160 (2009)
Hilton-Taylor, C., Baillie, J.E.M., Stuart, S.: 2004 iucn red list of threatened species: a global species assessment. IUCN, Gland, Switzerland and Cambridge, UK (2004)
Bishop, C.M., et al.: Pattern recognition and machine learning, vol. 4. Springer New York (2006)
Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)
Briggs, F., Lakshminarayanan, B., Neal, L., Fern, X.Z., Raich, R., Hadley, S.J., Hadley, A.S., Betts, M.G.: Acoustic classification of multiple simultaneous bird species: A multi-instance multi-label approach. The Journal of the Acoustical Society of America 131, 4640 (2012)
Cai, J., Ee, D., Pham, B., Roe, P., Zhang, J.: Sensor network for the monitoring of ecosystem: bird species recognition. In: 3rd International Conference on Intelligent Sensors, Sensor Networks and Information, ISSNIP 2007, pp. 293–298, December 2007
Cerutti, G., Tougne, L., Vacavant, A., Coquin, D.: A parametric active polygon for leaf segmentation and shape estimation. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Wang, S., Kyungnam, K., Benes, B., Moreland, K., Borst, C., Di Verdi, S., Yi-Jen, C., Ming, J. (eds.) ISVC 2011, Part I. LNCS, vol. 6938, pp. 202–213. Springer, Heidelberg (2011)
Champ, J., Lorieul, T., Servajean, M., Joly, A.: A comparative study of fine-grained classification methods in the context of the lifeclef plant identification challenge 2015. In: Working Notes of CLEF 2015 Conference (2015)
Chan, T.-H., Jia, K., Gao, S., Lu, J., Zeng, Z., Ma, Y.: Pcanet: a simple deep learning baseline for image classification? arXiv preprint arXiv:1404.3606 (2014)
Choi, S.: Plant identification with deep convolutional neural network: Snumedinfo at lifeclef plant identification task 2015. In: Working Notes of CLEF 2015 Conference (2015)
Concetto, S., Palazzo, S., Fisher, B., Boom, B.: Lifeclef fish identification task 2014. In: CLEF Working Notes 2015 (2015)
Dufour, O., Artieres, T., Glotin, H., Giraudet, P.: Clusterized mel filter cepstral coefficients and support vector machines for bird song idenfication (2013)
Evans, F.: Detecting fish in underwater video using the em algorithm. In: Proceedings of the 2003 International Conference on Image Processing, ICIP 2003, vol. 3, pp. III-1029-32 vol. 2, September 2003
Farnsworth, E.J., Chu, M., Kress, W.J., Neill, A.K., Best, J.H., Pickering, J., Stevenson, R.D., Courtney, G.W., VanDyk, J.K., Ellison, A.M.: Next-generation field guides. BioScience 63(11), 891–899 (2013)
K. J. Gaston and M. A. O’Neill. Automated species identification: why not? 359(1444), 655–667 (2004)
Ge, Z., Mccool, C., Corke, P.: Content specific feature learning for fine-grained plant classification. In: Working Notes of CLEF 2015 Conference (2015)
Glotin, H., Sueur, J.: Overview of the first international challenge on bird classification (2013)
Goëau, H., Bonnet, P., Joly, A., Bakić, V., Barbe, J., Yahiaoui, I., Selmi, S., Carré, J., Barthélémy, D., Boujemaa, N., et al.: Pl@ ntnet mobile app. In: Proceedings of the 21st ACM International Conference on Multimedia, pp. 423–424. ACM (2013)
Goëau, H., Bonnet, P., Joly, A., Boujemaa, N., Barthélémy, D., Molino, J.-F., Birnbaum, P., Mouysset, E., Picard, M.: The ImageCLEF 2011 plant images classification task. In: CLEF Working Notes (2011)
Goëau, H., Bonnet, P., Joly, A., Yahiaoui, I., Barthelemy, D., Boujemaa, N., Molino, J.-F.: The imageclef 2012 plant identification task. In: CLEF Working Notes (2012)
Goëau, H., Glotin, H., Vellinga, W.-P., Planque, R., Rauber, A., Joly, A.: Lifeclef bird identification task 2015. In: CLEF Working Notes 2015 (2015)
Goëau, H., Glotin, H., Vellinga, W.-P., Rauber, A.: Lifeclef bird identification task 2014. In: CLEF Working Notes 2014 (2014)
Goëau, H., Joly, A., Bonnet, P.: Lifeclef plant identification task 2015. In: CLEF Working Notes 2015 (2015)
Goëau, H., Joly, A., Selmi, S., Bonnet, P., Mouysset, E., Joyeux, L., Molino, J.-F., Birnbaum, P., Bathelemy, D., Boujemaa, N.: Visual-based plant species identification from crowdsourced data. In: ACM Conference on Multimedia, pp. 813–814 (2011)
Hazra, A., Deb, K., Kundu, S., Hazra, P., et al.: Shape oriented feature selection for tomato plant identification. International Journal of Computer Applications Technology and Research 2(4), 449–454 (2013)
Joly, A., Champ, J., Buisson, O.: Shared nearest neighbors match kernel for bird songs identification - lifeclef 2015 challenge. In: Working Notes of CLEF 2015 Conference (2015)
Joly, A., Goëau, H., Bonnet, P., Bakić, V., Barbe, J., Selmi, S., Yahiaoui, I., Carré, J., Mouysset, E., Molino, J.-F., et al.: Interactive plant identification based on social image data. Ecological Informatics 23, 22–34 (2014)
Joly, A., Goëau, H., Bonnet, P., Bakic, V., Molino, J.-F., Barthélémy, D., Boujemaa, N.: The imageclef plant identification task 2013. In: International Workshop on Multimedia Analysis for Ecological Data, Barcelone, Espagne, October 2013
Joly, A., Müller, H., Goëau, H., Glotin, H., Spampinato, C., Rauber, A., Bonnet, P., Vellinga, W.-P., Fisher, B.: Lifeclef 2014: multimedia life species identification challenges
Kebapci, H., Yanikoglu, B., Unal, G.: Plant image retrieval using color, shape and texture features. The Computer Journal 54(9), 1475–1490 (2011)
Kumar, N., Belhumeur, P.N., Biswas, A., Jacobs, D.W., Kress, W.J., Lopez, I.C., Soares, J.V.B.: Leafsnap: a computer vision system for automatic plant species identification. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 502–516. Springer, Heidelberg (2012)
Lasseck, M.: Improved automatic bird identification through decision tree based feature selection and bagging. In: Working Notes of CLEF 2015 Conference (2015)
Le, T.-L., Dng, D.N., Vu, H., Nguyen, T.-N.: Mica at lifeclef 2015: multi-organ plant identification. In: Working Notes of CLEF 2015 Conference (2015)
Lee, D.-J., Schoenberger, R.B., Shiozawa, D., Xu, X., Zhan, P.: Contour matching for a fish recognition and migration-monitoring system. In: Optics East, pp. 37–48. International Society for Optics and Photonics (2004)
Meza, I., Espino-Gamez, A., Solano, F., Villarreal, E\(.\)
Mokhov, S.A.: A marfclef approach to lifeclef 2015 tasks. In: Working Notes of CLEF 2015 Conference (2015)
Morais, E., Campos, M., Padua, F., Carceroni, R.: Particle filter-based predictive tracking for robust fish counting. In: 18th Brazilian Symposium on Computer Graphics and Image Processing, SIBGRAPI 2005. pp. 367–374, October 2005
E. A. O. M. Mostafa Mehdipour Ghazi, Yanikoglu, B., Ozdemir, M.C.: Sabanci-okan system in lifeclef 2015 plant identification competition. In: Working Notes of CLEF 2015 Conference (2015)
Mouine, S., Yahiaoui, I., Verroust-Blondet, A.: Advanced shape context for plant species identification using leaf image retrieval. In: ACM International Conference on Multimedia Retrieval, pp. 49:1–49:8 (2012)
Müller, H., Clough, P., Deselaers, T., Caputo, B. (eds.): ImageCLEF – Experimental Evaluation in Visual Information Retrieval. The Springer International Series on Information Retrieval, vol. 32. Springer, Heidelberg (2010)
Perronnin, F., Sánchez, J., Mensink, T.: Improving the fisher kernel for large-scale image classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 143–156. Springer, Heidelberg (2010)
Ravanbakhsh, M., Shortis, M.R., Shafait, F., Mian, A., Harvey, E.S., Seager, J.W.: Automated fish detection in underwater images using shape-based level sets. The Photogrammetric Record 30(149), 46–62 (2015)
Reyes, A.K., Caicedo, J.C., Camargo, J.E.: Fine-tuning deep convolutional networks for plant recognition. In: Working Notes of CLEF 2015 Conference (2015)
Rodriguez, A., Rico-Diaz, A.J., Rabuñal, J.R., Puertas, J., Pena, L.: Fish monitoring and sizing using computer vision. In: Vicente, J.M.F., Álvarez-Sánchez, J.R., López, F.P., Toledo-Moreo, F.J., Adeli, H. (eds.) Bioinspired Computation in Artificial Systems. LNCS, vol. 9108, pp. 419–428. Springer, Heidelberg (2015)
Shortis, M.R., Ravanbakskh, M., Shaifat, F., Harvey, E.S., Mian, A., Seager, J.W., Culverhouse, P.F., Cline, D.E., Edgington, D.R.: A review of techniques for the identification and measurement of fish in underwater stereo-video image sequences. In: SPIE Optical Metrology 2013, pp. 87910G–87910G. International Society for Optics and Photonics (2013)
Sigler, M., DeMaster, D., Boveng, P., Cameron, M., Moreland, E., Williams, K., Towler, R.: Advances in methods for marine mammal and fish stock assessments: Thermal imagery and camtrawl. Marine Technology Society Journal 49(2), 99–106, 2015–03-01T00:00:00
Spampinato, C., Chen-Burger, Y.-H., Nadarajan, G., Fisher, R.B.: Detecting, tracking and counting fish in low quality unconstrained underwater videos. In: VISAPP (2), pp. 514–519. Citeseer (2008)
Stowell, D.: Birdclef 2015 submission: unsupervised feature learning from audio. In: Working Notes of CLEF 2015 Conference (2015)
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. arXiv preprint arXiv:1409.4842 (2014)
Towsey, M., Planitz, B., Nantes, A., Wimmer, J., Roe, P.: A toolbox for animal call recognition. Bioacoustics 21(2), 107–125 (2012)
Trifa, V.M., Kirschel, A.N., Taylor, C.E., Vallejo, E.E.: Automated species recognition of antbirds in a mexican rainforest using hidden markov models. The Journal of the Acoustical Society of America 123, 2424 (2008)
Uijlings, J.R., van de Sande, K.E., Gevers, T., Smeulders, A.W.: Selective search for object recognition. International Journal of Computer Vision 104(2), 154–171 (2013)
Voorhees, E.M., et al.: The trec-8 question answering track report. In: TREC, vol. 99, pp. 77–82 (1999)
Wheeler, Q.D., Raven, P.H., Wilson, E.O.: Taxonomy: Impediment or expedient? Science 303(5656), 285 (2004)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Joly, A. et al. (2015). LifeCLEF 2015: Multimedia Life Species Identification Challenges. In: Mothe, J., et al. Experimental IR Meets Multilinguality, Multimodality, and Interaction. CLEF 2015. Lecture Notes in Computer Science(), vol 9283. Springer, Cham. https://doi.org/10.1007/978-3-319-24027-5_46
Download citation
DOI: https://doi.org/10.1007/978-3-319-24027-5_46
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24026-8
Online ISBN: 978-3-319-24027-5
eBook Packages: Computer ScienceComputer Science (R0)