Advertisement

Is Concept Mapping Useful for Biomedical Information Retrieval?

  • Wei Shen
  • Jian-Yun NieEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9283)

Abstract

Concepts have been extensively used in biomedical information retrieval (BIR); but the experimental results have often showed limited or no improvement compared to a traditional bag-of-words method. In this paper, we analyze the problems in concept mapping, and show how they can affect the results of BIR. This suggests a flexible utilization of the identified concepts.

Keywords

Biomedical information retrieval Concept MetaMap UMLS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aronson, A.R.: Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program. In: Proc. of the AMIA Symposium, pp. 17–21 (2001)Google Scholar
  2. 2.
    Bodenreider, O.: The unified medical language system (UMLS): integrating biomedical terminology. Nucleic Acids Research 32(Suppl. 1), D267–D270 (2004)CrossRefGoogle Scholar
  3. 3.
    Goeuriot, L., Jones, G., Kelly, L., Leveling, J., Hanbury, A., Müller, H., Salanterä, S., Suominen, H., Zuccon, G.: ShARe/CLEF eHealth Evaluation Lab 2013, Task 3: Information Retrieval to Address Patients’ Questions when Reading Clinical Reports. In: Proc. of CLEF 2013 (2013)Google Scholar
  4. 4.
    Goeuriot, L., Kelly, L., Li, W., Palotti, J., Pecina, P., Zuccon, G., Hanbury, A., Jones, G., Müller, H.: ShARe/CLEF eHealth Evaluation Lab 2014, Task 3: User-centred health information retrieval. In: Proc. of CLEF 2014 (2014)Google Scholar
  5. 5.
    Hersh, W., Hickam, D., Leone, T.: Words, concepts, or both: optimal indexing units for automated information retrieval. In: Proc. of 16th Annual Symposium on Computer Applications in Medical Care, pp. 644–648 (1992)Google Scholar
  6. 6.
    Koopman, B., Zuccon, G., Nguyen, A., Vickers, D., Bruza, P.: Exploiting SNOMED CT concepts and relationships for clinical information retrieval: Australian e-Health Research Centre and Queensland University of Technology at the TREC 2012 Medical Track (2012)Google Scholar
  7. 7.
    Lipscomb, C.E.: Medical subject headings (MeSH). Bulletin of the Medical Library Association 88(3), 265–266 (2000)Google Scholar
  8. 8.
    Metzler, D., Croft, W.B.: A Markov random field model for term dependencies. In: Proceedings of SIGIR, pp. 472–479 (2005)Google Scholar
  9. 9.
    Pratt, W., Yetisgen-Yildiz, M.: A study of biomedical concept identification: MetaMap vs. people. In: Proc. of AMIA Annual Symposium, pp. 529–533 (2003)Google Scholar
  10. 10.
    Qi, Y., Laquerre, P.-F.: Retrieving Medical Records with sennamed: NEC Labs America at TREC 2012 Medical Records Track (2012)Google Scholar
  11. 11.
    Shen, W., Nie, J.Y., Liu, X., Liu, X.: An investigation of the effectiveness of concept-based approach in medical information retrieval GRIUM@CLEF2014 eHealth Task 3. In: Proc. of the ShARe/CLEF eHealth Evaluation Lab (2014)Google Scholar
  12. 12.
    Spackman, K.A., Campbell, K.E., Côté, R.A.: SNOMED RT: a reference terminology for health care. In: Proc. AMIA Annual Fall Symp., pp. 640–644 (1997)Google Scholar
  13. 13.
    Zhu, D., Carterette, B.: Improving health records search using multiple query expansion collections. In: Proceedings of IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1–7 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.DIROUniversity of MontrealMontrealCanada

Personalised recommendations