Skip to main content

Meta Text Aligner: Text Alignment Based on Predicted Plagiarism Relation

Part of the Lecture Notes in Computer Science book series (LNISA,volume 9283)

Abstract

Text alignment is one of the main steps of plagiarism detection in textual environments. Considering the pattern in distribution of the common semantic elements of the two given documents, different strategies may be suitable for this task. In this paper we assume that the obfuscation level, i.e the plagiarism type, is a function of the distribution of the common elements in the two documents. Based on this assumption, we propose Meta Text Aligner which predicts plagiarism relation of two given documents and employs the prediction results to select the best text alignment strategy. Thus, it will potentially perform better than the existing methods which use a same strategy for all cases. As indicated by the experiments, we have been able to classify document pairs based on plagiarism type with the precision of \(89\%\). Furthermore exploiting the predictions of the classifier for choosing the proper method or the optimal configuration for each type we have been able to improve the Plagdet score of the existing methods.

Keywords

  • Meta Text Aligner
  • Plagiarism type
  • Text alignment
  • Plagiarism detection
  • Patterns of distribution of common elements

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-24027-5_16
  • Chapter length: 7 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   69.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-24027-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   89.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abnar, S., Dehghani, M., Zamani, H., Shakery, A.: Expanded n-grams for semantic text alignment. In: Lab Report for PAN at CLEF (2014)

    Google Scholar 

  2. Barrón-Cedeño, A., Rosso, P., Benedí, J.-M.: Reducing the plagiarism detection search space on the basis of the kullback-leibler distance. In: Gelbukh, A. (ed.) CICLing 2009. LNCS, vol. 5449, pp. 523–534. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  3. Brin, S., Davis, J., Garcia-Molina, H.: Copy detection mechanisms for digital documents. ACM SIGMOD Record 24, 398–409 (1995)

    CrossRef  Google Scholar 

  4. Gaizauskas, R., Foster, J., Wilks, Y., Arundel, J., Clough, P., Piao, S.: The meter corpus: a corpus for analysing journalistic text reuse. In: Proceedings of the Corpus Linguistics 2001 Conference, pp. 214–223 (2001)

    Google Scholar 

  5. Glinos, D.: A hybrid architecture for plagiarism detection. In: Lab Report for PAN at CLEF (2014)

    Google Scholar 

  6. Palkovskii, Y., Belov, A.: Developing high-resolution universal multitype n-gram plagiarism detector. In: Lab Report for PAN at CLEF (2014)

    Google Scholar 

  7. Potthast, M., Hagen, M., Beyer, A., Busse, M., Tippmann, M., Rosso, P., Stein, B.: Overview of the 6th international competition on plagiarism detection. In: Cappellato, L., Ferro, N., Halvey, M., Kraaij, W. (eds.) Working Notes Papers of the CLEF 2014 Evaluation Labs (2014)

    Google Scholar 

  8. Sanchez-Perez, M., Sidorov, G., Gelbukh, A.: A winning approach to text alignment for text reuse detection at pan 2014. In: Lab Report for PAN at CLEF (2014)

    Google Scholar 

  9. Shivakumar, N., Garcia-Molina, H.: Scam: A copy detection mechanism for digital documents, pp. 1–13 (1995)

    Google Scholar 

  10. Stein, B., zu Eissen, S.M., Potthast, M.: Strategies for retrieving plagiarized documents. In: Proceedings of SIGIR 2007, pp. 825–826. ACM (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samira Abnar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Abnar, S., Dehghani, M., Shakery, A. (2015). Meta Text Aligner: Text Alignment Based on Predicted Plagiarism Relation. In: , et al. Experimental IR Meets Multilinguality, Multimodality, and Interaction. CLEF 2015. Lecture Notes in Computer Science(), vol 9283. Springer, Cham. https://doi.org/10.1007/978-3-319-24027-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24027-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24026-8

  • Online ISBN: 978-3-319-24027-5

  • eBook Packages: Computer ScienceComputer Science (R0)