Triangular Decomposition of Matrices in a Domain

  • Gennadi Malaschonok
  • Anton Scherbinin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9301)


Deterministic recursive algorithms for the computation of matrix triangular decompositions with permutations like LU and Bruhat decomposition are presented for the case of commutative domains. This decomposition can be considered as a generalization of LU and Bruhat decompositions because they both may easily be obtained from this triangular decomposition. Algorithms have the same complexity as the algorithm of matrix multiplication.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akritas, A.G., Akritas, E.K., Malaschonok, G.I.: Various proofs of Sylvester’s (determinant) identity. In: Proc. Int. IMACS Symp. on Symbolic Computation, June 14–17, 1993, Lille, France, pp. 228–230 (1993)Google Scholar
  2. 2.
    Grigoriev, D.: Additive complexity in directed computations. Theoretical Computer Science 19, 39–67 (1982)Google Scholar
  3. 3.
    Grigoriev, D.: Analogy of Bruhat decomposition for the closure of a cone of Chevalley group of a classical series. Soviet Math. Dokl. 23, 393–397 (1981)Google Scholar
  4. 4.
    Malaschonok, G.I.: A fast algorithm for adjoint matrix computation. Tambov University Reports 5(1), 142–146 (2000)Google Scholar
  5. 5.
    Malaschonok, G.I.: Effective matrix methods in commutative domains. In: Krob, D., Mikhalev, A.A., Mikhalev, A.V. (eds.) Formal Power Series and Algebraic Combinatorics, pp. 506–517. Springer, Berlin (2000)Google Scholar
  6. 6.
    Malaschonok, G.: Fast generalized bruhat decomposition. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2010. LNCS, vol. 6244, pp. 194–202. Springer, Heidelberg (2010)Google Scholar
  7. 7.
    Malaschonok, G.I.: Fast matrix decomposition in parallel computer algebra. Tambov University Reports 15(4), 1372–1385 (2010)Google Scholar
  8. 8.
    Malaschonok, G.: Generalized bruhat decomposition in commutative domains. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2013. LNCS, vol. 8136, pp. 231–242. Springer, Heidelberg (2013)Google Scholar
  9. 9.
    Malaschonok, G.I.: Matrix Computational Methods in Commutative Rings. Tambov University Publishing House, Tambov (2002)Google Scholar
  10. 10.
    Malaschonok, G.I.: On the fast generalized Bruhat decomposition in domains. Tambov University Reports 17(2), 544–550 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Tambov State UniversityTambovRussia

Personalised recommendations