Parametric Solvable Polynomial Rings and Applications

  • Heinz Kredel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9301)


We recall definitions and properties of parametric solvable polynomial rings and variants. For recursive solvable polynomial rings, i.e. solvable polynomial rings with coefficients from a solvable polynomial ring, also commutator relations between main and coefficient variables are introduced. From these rings solvable quotient and residue class rings can be constructed and used as coefficients of solvable polynomials. The resulting skew extension fields of the ground field can be applied for skew root finding or primary ideal decomposition. We present the design and implementation of these rings in the strongly typed, generic, object oriented computer algebra system JAS.


Commutator Relation Polynomial Ring Computer Algebra Computer Algebra System Ring Factory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kredel, H.: On a Java Computer Algebra System, its performance and applications. Science of Computer Programming 70(2–3), 185–207 (2008)Google Scholar
  2. 2.
    Kredel, H.: The Java algebra system (JAS). Technical report (since 2000).
  3. 3.
    Kredel, H.: Unique factorization domains in the Java computer algebra system. In: Sturm, T., Zengler, C. (eds.) ADG 2008. LNCS, vol. 6301, pp. 86–115. Springer, Heidelberg (2011)Google Scholar
  4. 4.
    Kredel, H., Jolly, R.: Algebraic structures as typed objects. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2011. LNCS, vol. 6885, pp. 294–308. Springer, Heidelberg (2011)Google Scholar
  5. 5.
    Kredel, H.: Distributed Gröbner bases computation with MPJ. In: IEEE AINA Workshops, Barcelona, Spain, pp. 1429–1435 (2013)Google Scholar
  6. 6.
    Apel, J., Lassner, W.: An algorithm for calculations in eveloping fields of Lie algebras. In: Proc. Int. Conf. on Computer Algebra and its Applications in Theoretical Physics, JINR, D11–85-791, Dubna (1985)Google Scholar
  7. 7.
    Apel, J., Lassner, W.: Computation and simplification in Lie fields. In: EUROCAL 1987, pp. 468–478 (1987)Google Scholar
  8. 8.
    Kandri Rody, A., Weispfennning, V.: Non-commutative Gröbner bases in algebras of solvable type. J. Symb. Comp. 9(1), 1–26 (1990)Google Scholar
  9. 9.
    Mora, T.: An introduction to commutative and noncommutative Gröbner bases. Theor. Comput. Sci. 134(1), 131–173 (1994)Google Scholar
  10. 10.
    Weispfenning, V.: Comprehensive Gröbner bases. J. Symb. Comp. 14(1), 1–29 (1992)Google Scholar
  11. 11.
    Kredel, H., Weispfenning, V.: Parametric Gröbner bases for non-commutative polynomials. In: Shirkov, D.V., Rostovtsev, V.A., Gerdt, V.P. (eds.) IV. Int. Conf. on Computer Algebra in Physical Research, Dubna, USSR, 1990, pp. 236–246. World Scientific Publishing (1991)Google Scholar
  12. 12.
    Kredel, H.: Solvable Polynomial Rings. Dissertation, Universität Passau, Passau (1992)Google Scholar
  13. 13.
    Bueso, J.L., Gómez-Torrecillas, J., Verschoren, A.: Algorithmic Methods in Non-Commutative Algebra: Applications to Quantum Groups. Kluwer Academic Publishers (2003)Google Scholar
  14. 14.
    Levandovskyy, V., Schönemann, H.: Plural: a computer algebra system for noncommutative polynomial algebras. In: Proc. Symbolic and Algebraic Computation, International Symposium ISSAC 2003, Philadelphia, USA, pp. 176–183 (2003)Google Scholar
  15. 15.
    Levandovskyy, V.: Non-commutative Computer Algebra for polynomial algebras: Gröbner bases, applications and implementation. Dissertation, University of Kaiserslautern, Kaiserslautern (2005)Google Scholar
  16. 16.
    Cohn, P.M.: Skew Fields, Theory of General Division Rings. Encyclopedia of Mathematics and its Applications, vol. 57. Cambridge University Press (1995)Google Scholar
  17. 17.
    Kredel, H.: On the design of a Java computer algebra system. In: Proc. PPPJ 2006, University of Mannheim, pp. 143–152 (2006)Google Scholar
  18. 18.
    Kredel, H., Pesch, M.: MAS: the modula-2 algebra system. In: Computer Algebra Handbook, pp. 421–428. Springer (2003)Google Scholar
  19. 19.
    Dolzmann, A., Sturm, T.: Redlog: Computer algebra meets computer logic. ACM SIGSAM Bull. 31(2), 2–9 (1997)Google Scholar
  20. 20.
    Montes, A.: An new algorithm for discussing Gröbner basis with parameters. J. Symb. Comput. 33(1–2), 183–208 (2002)Google Scholar
  21. 21.
    Suzuki, A., Sato, Y.: An alternative approach to comprehensive Gröbner bases. J. Symb. Comput. 36(3–4), 649–667 (2003)Google Scholar
  22. 22.
    Nabeshima, K.: A speed-up of the algorithm for computing comprehensive Gröbner systems. In: Proc. ISSAC 2007, pp. 299–306 (2007)Google Scholar
  23. 23.
    Inoue, S., Sato, Y.: On the parallel computation of comprehensive Gröbner systems. In: Proc. PASCO 2007, pp. 99–101 (2007)Google Scholar
  24. 24.
    Kredel, H.: Comprehensive Gröbner bases in a Java computer algebra system. In: Proceedings ASCM 2009, Kyushu University, Fukuoka, Japan, pp. 77–90 (2009)Google Scholar
  25. 25.
    Kredel, H.: Comprehensive Gröbner bases in a Java computer algebra system. In: Feng, R., Lee, W.S., Sato, Y. (eds.) Computer Mathematics, pp. 93–108. Springer, Heidelberg (2014)Google Scholar
  26. 26.
    Nabeshima, K.: PGB: a package for computing parametric polynomial systems. In: Proceedings ASCM 2009, Kyushu University, Fukuoka, Japan, pp. 111–122 (2009)Google Scholar
  27. 27.
    Greuel, G., Pfister, G., Schönemann, H.: Singular - a computer algebra system for polynomial computations. In: Computer Algebra Handbook, pp. 445–450. Springer (2003)Google Scholar
  28. 28.
    Rosenkranz, M., Regensburger, G.: Solving and factoring boundary problems for linear ordinary differential equations in differential algebras. J. Symb. Comput. 43(8), 515–544 (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.IT-CenterUniversity of MannheimMannheimGermany

Personalised recommendations