Abstract
In this paper, we present a symbolic algorithm to compute the topology of a plane curve. The algorithm mainly involves resultant computations and real root isolation for univariate polynomials. The novelty of this paper is that we use a technique of interval polynomials to solve the system \(\big\{f(\alpha,\,y)=\frac{\partial f}{\partial y}(\alpha,\,y)=0\big\}\) and at the same time, get the simple roots of f(α, y) = 0 on the α fiber. It greatly improves the efficiency of the lifting step since we need not compute the simple roots of f(α, y) = 0 any more. After the topology is computed, we use a revised Newton’s method to compute the visualization of the plane algebraic curve. We ensure that the meshing is topologically correct. Many nontrivial examples show our implementation works well.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Akritas, A.G.: An implementation of Vincents Theorem. Numerische Mathematik 36, 53–62 (1980)
Alberti, L., Mourrain, B., Wintz, J.: Topology and arrangement computation of semi-algebraic planar curves. Comp. Aid. Geom. Des. 25(8), 631–651 (2008)
Alcázar, J.G., Schicho, J., Sendra, J.R.: A delineablity-based method for computing critical sets of algebraic surfaces. J. Symb. Comp. 42, 678–691 (2007)
Arnon, D.S., McCallum, S.: A polynomial-time algorithm for the topological type of a real algebraic curve. J. Symb. Comp. 5, 213–236 (1998)
Arnon, D.S., Collins, G., McCallum, S.: Cylindrical algebraic decomposition, I: the Basic Algorithm. SIAM Journal on Computing 13(4), 865–877 (1984)
Arnon, D.S., Collins, G., McCallum, S.: Cylindrical algebraic decomposition, II: an adjacency algorithm for plane. SIAM Journal on Computing 13(4), 878–889 (1984)
Arnon, D.S., Collins, G.: Cylindrical algebraic decomposition, III: an adjacency algorithm for 3D space. J. Symb. Comp. 5(1,2), 163–187 (1988)
Basu, S., Pollack, R., Roy, M.F.: Algorithm in real algebraic geometry. Algorithms and Computation in Mathematics, vol. 10, 2nd edn. Springer, Berlin (2006)
Beltrán, C., Leykin, A.: Robust Certified Numerical Homotopy Tracking. Foundations of Computational Mathematics 13(2), 253–295 (2013)
Berberich, E., Emeliyanenko, P., Kobel, A., Sagraloff, M.: Arrangement computation for planar algebraic curves. In: Proc. SNC, pp. 88–99 (2011)
Burr, M., Choi, S., Galehouse, B., Yap, C.: Complete subdivision algorithms, II: Isotopic meshing of algebraic curves. In: Proc. ACM ISSAC, pp. 87–94 (2008)
Cheng, S.W., Dey, T.K., Ramos, A., Ray, T.: Sampling and meshing a surface with guaranteed topology and geometry. In: Proc. Symp. on CG, pp. 280–289 (2004)
Cheng, J.S., Gao, X.S., Li, J.: Topology determination and isolation for implicit plane curves. In: Proc. ACM Symposium on Applied Computing, pp. 1140–1141 (2009)
Cheng, J.S., Jin, K.: A generic position based method for real root isolation of zero-dimensional polynomial systems. J. Symb. Comp. 68, 204–224 (2015)
Cheng, J.S., Lazard, S., Peñaranda, L., Pouget, M., Rouillier, F., Tsigaridas, E.: On the topology of real algebraic plane curves. Mathematics in Computer Science 4, 113–117 (2010)
Collins, G., Akritas, A.: Polynomial real roots isolation using Descartes’ rule of signs. In: ISSAC, pp. 272–275 (1976)
Eigenwillig, A., Kerber, M.: Exact and efficient 2d-arrangements of arbitrary algebraic curves. In: Proc. 19th Annual ACM-SIAM Symposium on Discrete Algorithm (SODA 2008), San Francisco, USA, January 2008, pp. 122–131 (2008)
Eigenwillig, A., Kerber, M., Wolpert, N.: Fast and exact geometric analysis of real algebraic plane curves. In: Proc. ACM ISSAC 2007, pp. 151–158. ACM Press (2007)
Fulton, W.: Introduction to intersection theory in algebraic geometry. In: CBMS Regional Conference Series in Mathematics, vol. 54. Published for the Conference Board of the Mathematical Sciences, Washington, DC (1984)
Gao, X.S., Li, M.: Rational Quadratic Approximation to Real Algebraic Curves. Comp. Aid. Geom. Des. 21, 805–828 (2004)
Hong, H.: An Efficient Method for Analyzing the Topology of Plane Real Algebraic Curves. Mathematics and Computers in Simulation 42(4–6), 571–582 (1996)
Gomes, A.J.P., Morgado, J.F.M., Pereira, E.S.: A BSP-based algorithm for dimensionally nonhomogeneous planar implicit curves with topological guarantees. ACM Trans. Graph. 28(2) (2009)
Kerber, M.: Geometric algorithms for algebraic curves and surfaces. Ph.D. Thesis, Universität des Saarlandes, Germany (2009)
Kerber, M., Sagraloff, M.: A worst-case bound for topology computation of algebraic curves. J. Symb. Comp. 47, 239–258 (2012)
Kvasov, B.I.: Methods of Shape-Preserving Spline Approximation. World Scientific, Singapore (2000)
Labs, O.: A list of challenges for real algebraic plane curve visualization software In: Nolinear Computational Geometry. The IMA Volumes, vol. 151., pp. 137–164. Springer, New York (2010)
Lazard, D.: CAD and topology of semi-algebraic sets. Mathematics in Computer Science 4(1), 93–112 (2010)
Liang, C., Mourrain, B., Pavone, J.P.: Subdivision methods for the topology of 2d and 3d implicit curves. In: Computational Methods for Algebraic Spline Surfaces. Springer-Verlag (2006)
Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3d surface construction algorithm. In: Proc. SIGGRAPH 1987. ACM Press (1987)
González-Vega, L., Necula, I.: Efficient topology determination of implicitly defined algebraic plane curves. Comp. Aid. Geom. Des. 19, 719–743 (2002)
Martin, R., Shou, H., Voiculescu, I., Bowyer, A., Wang, G.: Comparison of interval methods for plotting algebraic curves. Comp. Aid. Geom. Des. 19, 553–587 (2002)
Mccallum, S., Collins, G.E.: Local box adjacency a lgorithms for cylindrical algebraic decompositions. J. Symb. Comp. 33, 321–342 (2002)
Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. Society for Industrial and Applied Mathematics, Philadelphia (2009)
Mourrain, B., Pion, S., Schmitt, S., Técourt, J.P., Tsigaridas, E.P., Wolpert, N.: Algebraic issues in computational geometry. In: Boissonnat, J.D., Teillaud, M. (eds.) Effective Computaional Geometry for Curves and Surfaces. Mathematics and Visualization, chapter 3. Springer, Berlin (2006)
Noakes, L., Kozera, R.: Cumulative chords, piecewise-quadratics and piecewise-cubics. In: Klette, R., et al. (eds.) Geometric Properties for Incomplete Data, pp. 59–75. Springer, Printed in the Netherlands (2006)
Plantinga, S., Vegter, G.: Isotopic meshing of implicit surfaces. Visual Computer 23, 45–58 (2007)
Ratschek, H.: Scci-hybrid method for 2d curve tracing. International Journal of Image and Graphics World Scientific Publishing Company 5(3), 447–479 (2005)
Rouillier, F., Zimmermann, P.: Efficient isolation of polynomial real roots. Journal of Computational and Applied Mathematics 162(1), 33–50 (2003)
Sakkalis, T.: The topological configuration of a real algebraic curve. Bull. Aust. Math. Soc. 43, 37–50 (1991)
Seidel, R., Wolpert, N., On the exact computation of the topology of real algebraic curves. In: Proceedings of Symposium on Computational Geometry, pp. 107–115 (2005)
Teissier, B.: Cycles évanescents, sections planes et conditions de Whitney. (french). Singularités à Cargèse. Astérisque 7 et 8, 285–362 (1973)
Li, T.Y.: Numerical solution of polynomial systems by homotopy continuation methods. Handbook of numerical analysis 11, 209–30 (2003)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Jin, K., Cheng, JS., Gao, XS. (2015). On the Topology and Visualization of Plane Algebraic Curves. In: Gerdt, V., Koepf, W., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2015. Lecture Notes in Computer Science(), vol 9301. Springer, Cham. https://doi.org/10.1007/978-3-319-24021-3_19
Download citation
DOI: https://doi.org/10.1007/978-3-319-24021-3_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24020-6
Online ISBN: 978-3-319-24021-3
eBook Packages: Computer ScienceComputer Science (R0)