Intelligent Bio-Inspired Detection of Food Borne Pathogen by DNA Barcodes: The Case of Invasive Fish Species Lagocephalus Sceleratus

  • Konstantinos DemertzisEmail author
  • Lazaros IliadisEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 517)


Climate change combined with the increase of extreme weather phenomena, has significantly influenced marine ecosystems, resulting in water overheating, increase of sea level and rising of the acidity of surface waters. The potential impacts in the biodiversity of sensitive ecosystems (such as Mediterranean sea) are obvious. Many organisms are under extinction, whereas other dangerous invasive species are multiplied and thus they are destroying the ecological equilibrium. This research paper presents the development of a sophisticated, fast and accurate Food Pathogen Detection (FPD) system, which uses the biologically inspired Artificial Intelligence algorithm of Extreme Learning Machines. The aim is the automated identification and control of the extremely dangerous for human health invasive fish species “Lagocephalus Sceleratus”. The matching is achieved through extensive comparisons of protein and DNA sequences, known also as DNA barcodes following an ensemble learning approach.


Extreme learning machines Ensemble learning Food pathogen detection DNA barcoding Lagocephalus sceleratus Invasive species Climate change 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Frank, J.R., Olden, J.D.: Assessing the Effects of Climate Change on Aquatic Invasive Species. Conservation Biology 22(3), 521–533 (2008). doi: 10.1111/j.1523-1739.2008.00950.x. Society for Conservation BiologyCrossRefGoogle Scholar
  2. 2.
    Kheifets, J., Rozhavsky, B., Solomonovich, Z.G., Rodman, M., Soroksky, A.: Severe Tetrodotoxin Poisoning after Consumption of Lagocephalus sceleratus (Pufferfish, Fugu) Fished in Mediterranean Sea, Treated with Cholinesterase Inhibitor. Case Reports in Critical Care 2012, Article ID 782507, 3 p. (2012). doi: 10.1155/2012/782507
  3. 3.
    Akova, F., Dundar, M., Davisson, V.J., Hirleman, D.E., Bhunia, A.K., Robinson, J.P., Rajwa, B.: A Machine-Learning Approach to Detecting Unknown Bacterial Serovars. Statistical Analysis and Data Mining (2011). doi: 10.1002/sam.10085
  4. 4.
    Pan, W., Zhao, J., Chen, Q.: Classification of foodborne pathogens using near infrared laser scatter imaging system with multivariate calibration (2015). doi: 10.1038/srep09524
  5. 5.
    Rajwa, B., Dundar, M.M., Akova, F., Bettasso, A., Patsekin, V., Hirleman, E.D., Bhunia, A.K., Robinson, J.P.: Discovering the Unknown: Detection of Emerging Pathogens Using a Label-Free Light-Scattering System. Cytometry Part A 77A, 1103–1112 (2010)CrossRefGoogle Scholar
  6. 6.
    Rajwa, B., Venkatapathi, M., Ragheb, K., Banada, P.P., Hirleman, E.D., Lary, T., Robinson, J.P.: Automated classification and recognition of bacterial particles in flow by multi-angle scatter measurement and a support-vector machine classifier. Cytometry A 73(4), 369–379 (2008). doi: 10.1002/cyto.a.20515 CrossRefGoogle Scholar
  7. 7.
    Pan, Y.: Protein structure prediction and understanding using machine learning methods. In: 2005 IEEE Granular Computing, vol. 1 (2005). doi: 10.1109/GRC.2005.1547225
  8. 8.
    Ma, X., Hu, L.: Extracting sequence features to predict DNA-binding proteins using support vector machine. In: 2013 Fifth International Conference on Computational and Information Sciences (ICCIS) (2013). doi: 10.1109/ICCIS.2013.48
  9. 9.
    Yu, D.-J., Hu, J., Li, Q.M., Tang, Z.M., Yang, J.Y., Shen, H.B.: Constructing Query-Driven Dynamic Machine Learning Model With Application to Protein-Ligand Binding Sites Prediction. NanoBioscience, IEEE, 14(1) (2015)Google Scholar
  10. 10.
    Leigh, D., Thredgold, E.A.V., Lenehan, C.E.: Direct detection of histamine in fish flesh using microchip electrophoresis with capacitively coupled contactless conductivity detection. Anal. Methods, 1802–1808 (2015). doi: 10.1039/C4AY02866J
  11. 11.
  12. 12.
    Lipman, D.J., Pearson, W.R.: Rapid and sensitive protein similarity searches. Science 227(4693), 1435–1441 (1985). doi: 10.1126/science.2983426. PMID 2983426CrossRefGoogle Scholar
  13. 13.
    Moraglio, A., Di Chio, C., Poli, R.: Geometric Particle Swarm Optimization 2008, Article ID 143624, 14 p. (2008). doi: 10.1155/2008/143624
  14. 14.
    Rokach, Lior: Ensemble-based classifiers. Artificial Intelligence Review 33(1–2), 1–39 (2010). doi: 10.1007/s10462-009-9124-7 CrossRefGoogle Scholar
  15. 15.
    Cambria, E., Huang, G.-B.: Extreme Learning Machines. IEEE Intelligent Systems (2013)Google Scholar
  16. 16.
    Huang, G.-B.: An Insight into Extreme Learning Machines: Random Neurons, Random Features and Kernels (2014). doi: 10.1007/s12559-014-9255-2, Springer
  17. 17.
  18. 18.
  19. 19.
    Nitesh, V., Chawla, B.K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research 16 (2002)Google Scholar
  20. 20.

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Forestry & Management of the Environment & Natural ResourcesDemocritus University of ThraceOrestiadaGreece

Personalised recommendations