Advertisement

Automatic Detection of Microaneurysms for Diabetic Retinopathy Screening Using Fuzzy Image Processing

  • Sarni Suhaila RahimEmail author
  • Vasile Palade
  • James Shuttleworth
  • Chrisina Jayne
  • Raja Norliza Raja Omar
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 517)

Abstract

Fuzzy image processing was proven to help improve the image quality for both medical and non-medical images. This paper presents a fuzzy techniques-based eye screening system for the detection of one of the most important visible signs of diabetic retinopathy; microaneurysms, small red spot on the retina with sharp margins. The proposed ophthalmic decision support system consists of an automatic acquisition, screening and classification of eye fundus images, which can assist in the diagnosis of the diabetic retinopathy. The developed system contains four main parts, namely the image acquisition, the image preprocessing with fuzzy techniques, the microaneurysms localisation and detection, and finally the image classification. The fuzzy image processing approach provides better results in the detection of microaneurysms.

Keywords

Diabetic Retinopathy Eye screening Colour fundus images Fuzzy image processing Microaneurysms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Scanlon, P.H., Wilkinson, C.P., Aldington, S.J., Matthews, D.R.: A Practical Manual of Diabetic Retinopathy Management. Wiley-Blackwell, Chicester (2009)CrossRefGoogle Scholar
  2. 2.
    Early Treatment Diabetic Retinopathy Study Research Group: Grading diabetic retinopathy from stereoscopic color fundus photographs- an extension of the modified Airlie House classification. ETDRS report number 10. Ophthalmology 98(5 Suppl), 823–833 (1991)Google Scholar
  3. 3.
    Wilkinson, C.P., Ferris, F.L., Klein, R.E., Lee, P.P., Agardh, C.D., Davis, M., Dills, D., Kampik, A., Pararajasegaram, R., Verdaguer, J.T.: Proposed International Clinical Diabetic Retinopathy and Diabetic Macula Edema Disease Severity Scales. American Academy of Ophthalmology 110(9), 1677–1682 (2003)CrossRefGoogle Scholar
  4. 4.
    Jayne, C., Rahim, S.S., Palade, V., Shuttleworth, J.: Automatic screening and classification of diabetic retinopathy fundus images. In: Mladenov, V., Jayne, C., Iliadis, L. (eds.) EANN 2014. CCIS, vol. 459, pp. 113–122. Springer, Heidelberg (2014)Google Scholar
  5. 5.
    Rahim, S.S., Jayne, C., Palade, V., Shuttleworth, J.: Automatic detection of microaneurysms in colour fundus images for diabetic retinopathy screening. Journal of Neural Computing and Applications (2015) (in press). doi: 10.1007/s00521-051-1929-5
  6. 6.
    Amiri, S.A., Hassanpour, H., Shahiri, M., Ghaderi, R.: Detection of microaneurysms in retinal angiography images using the Circular Hough Transform. Journal of Advances in Computer Research 3(1), 1–12 (2008)Google Scholar
  7. 7.
    Abdelazeem, S.: Microaneurysm detection using vessels removal and circular hough transform. In: Nineteenth National Radio Science Conference (NRSC 2002), pp. 421–426. IEEE Press, New York (2002)Google Scholar
  8. 8.
    Niemeijer, M., van Ginnerken, B., Cree, M.J., Mizutani, A., Quellec, G., Sanchez, C.I., Zhang, B., Hornero, R., Lamard, M., Muramatsu, C., Wu, X., Cazuquel, G., You, J., Mayo, A., Li, Q., Hatanaka, Y., Cochener, B., Roux, C., Karray, F., Garcia, M., Fujita, H., Abramoff, M.D.: Retinopathy Online Challenge: Automatic detection of microaneurysms in digital color fundus photographs. IEEE Transactions on Medical Imaging 29(1), 185–195 (2010)CrossRefGoogle Scholar
  9. 9.
    Akram, M.U., Khalid, S., Tariq, A., Khan, S.A., Azam, F.: Detection and classification of retinal lesions for grading of diabetic retinopathy. Computers in Biology and Medicine 45, 161–171 (2014)CrossRefGoogle Scholar
  10. 10.
    Sundhar, C., Archana, D.: Automatic screening of fundus images for detection of diabetic retinopathy. International Journal of Communication and Computer Technologies 2(1), 100–105 (2014)Google Scholar
  11. 11.
    Lim, G., Lee, M.L., Hsu, W., Wong, T.Y.: Transformed representations for convolutional neural networks in diabetic retinopathy screening. Modern Artificial Intelligent for Health Analytics, 21–25 (2014)Google Scholar
  12. 12.
    Adal, K.M., Sidibe, D., Ali, S., Chaum, E., Karnowski, T.P., Meriaudeau, F.: Automated detection of microaneurysms using scale-adapted blob analysis and semi-supervised learning. Computer Methods and Programs in Biomedicine 114, 1–10 (2014)CrossRefGoogle Scholar
  13. 13.
    Sheet, D., Garud, H., Suveer, A., Mahadevappa, M., Chatterjee, J.: Brightness preserving dynamic Fuzzy Histogram Equalization. IEEE Transactions on Consumer Electronics 56(4), 2475–2480 (2010)CrossRefGoogle Scholar
  14. 14.
    Garud, H., Sheet, D., Suveer, A., Karri, P.K., Ray, A.K., Mahadevappa, M., Chatterjee, J.: Brightness preserving contrast enhancement in digital pathology. In: 2011 International Conference on Image Information Processing (ICIIP 2011), pp. 1–5. IEEE, New York (2011)Google Scholar
  15. 15.
    Patil, J., Chaudhari, A.L.: Development of digital image processing using Fuzzy Gaussian filter tool for diagnosis of eye infection. International Journal of Computer Applications 51(19), 10–12 (2012)CrossRefGoogle Scholar
  16. 16.
    Toh, K.K.V., Mat Isa, N.A.: Noise adaptive Fuzzy switching median filter for salt-and-pepper noise reduction. IEEE Signal Processing Letters 17(3), 281–284 (2010)CrossRefGoogle Scholar
  17. 17.
    Kwan, H.K.: Fuzzy filters for noisy image filtering. In: IEEE International Symposium on Circuits and Systems 2003 (ISCAS 2003), vol. 4, pp. 161–164. IEEE, New York (2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Sarni Suhaila Rahim
    • 1
    • 2
    Email author
  • Vasile Palade
    • 1
  • James Shuttleworth
    • 1
  • Chrisina Jayne
    • 1
  • Raja Norliza Raja Omar
    • 3
  1. 1.Faculty of Engineering and ComputingCoventry UniversityCoventryUK
  2. 2.Faculty of Information and Communication TechnologyUniversiti Teknikal Malaysia Melaka, Hang Tuah JayaDurian TunggalMalaysia
  3. 3.Department of OphthalmologyHospital MelakaMelakaMalaysia

Personalised recommendations