Skip to main content

Using HFST—Helsinki Finite-State Technology for Recognizing Semantic Frames

  • 244 Accesses

Part of the Communications in Computer and Information Science book series (CCIS,volume 537)

Abstract

To recognize semantic frames in languages with a rich morphology, we need computational morphology. In this paper, we look at one particular framework, HFST–Helsinki Finite-State Technology, and how to use it for recognizing semantic frames in context. HFST enables tokenization, morphological analysis, tagging, and frame annotation in one single framework.

Keywords

  • Noun Phrase
  • Conditional Random Field
  • Training Corpus
  • Frame Identification
  • British National Corpus

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-23980-4_8
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   44.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-23980-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   59.99
Price excludes VAT (USA)

Notes

  1. 1.

    http://gutenberg.org.

  2. 2.

    http://www.natcorp.ox.ac.uk/.

  3. 3.

    http://www.anc.org.

  4. 4.

    The FrameNet-annotated texts are at https://framenet.icsi.berkeley.edu/fndrupal/index.php?q=fulltextIndex.

References

  1. Brants, T.: TnT: a statistical part-of-speech tagger. In: Proceedings of the Sixth Conference on Applied Natural Language Processing, pp. 224–231 (2000)

    Google Scholar 

  2. Collins, M.: Discriminative training methods for hidden markov models: theory and experiments with perceptron algorithms. In: Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing, EMNLP 2002, vol. 10, pp. 1–8. Association for Computational Linguistics, Stroudsburg (2002)

    Google Scholar 

  3. Das, D., Chen, D., Martins, A., Schneider, N., Smith, N.: Frame-semantic parsing. Comput. Linguist. 40(1), 9–56 (2014)

    CrossRef  Google Scholar 

  4. Erk, K., Pado, S.: Shalmaneser – a flexible toolbox for semantic role assignment. In: Proceedings of the Fifth International Conference on Language Resources and Evaluation (LREC2006) (2006)

    Google Scholar 

  5. Fillmore, C.J.: Frame semantics and the nature of language. Annals New York Acad. Sci.: Conf. Origin Dev. Lang. Speech 280(1), 20–32 (1976)

    CrossRef  Google Scholar 

  6. Grzegorz Chrupala, G.D., van Genabith, J.: Learning morphology with Morfette. In: Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC 2008). European Language Resources Association (ELRA), Marrakech, May 2008

    Google Scholar 

  7. Harwick, S., Silfverberg, M., Lindén, K.: Extracting semantic frames using hfst-pmatch. In: Proceedings from NODALIDA 2015, pp. 305–308. Vilnius, May 2015

    Google Scholar 

  8. Huang, L., Fayong, S., Guo, Y.: Structured perceptron with inexact search. In: Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 142–151 (2012)

    Google Scholar 

  9. Johansson, R., Nugues, P.: LTH: semantic structure extraction using non-projective dependency trees. In: Proceedings of SEMEVAL 2007 (2007)

    Google Scholar 

  10. Karttunen, L.: Beyond morphology: pattern matching with FST. In: Mahlow, C., Piotrowski, M. (eds.) SFCM 2011. CCIS, vol. 100, pp. 1–13. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  11. Kokkinakis, D., Niemi, J., Hardwick, S., Lindén, K., Borin, L.: HFST-sweNER - a new NER resource for Swedish. In: Proceedings of the 9th Edition of the Language Resources and Evaluation Conference (LREC 2014), Reykjavik 26–31 May 2014, pp. 2537–2543 (2014)

    Google Scholar 

  12. Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: Proceedings of the Eighteenth International Conference on Machine Learning, ICML 2001, pp. 282–289. Morgan Kaufmann Publishers Inc., San Francisco (2001)

    Google Scholar 

  13. Lindén, K., Axelson, E., Drobac, S., Hardwick, S., Kuokkala, J., Niemi, J., Pirinen, T.A., Silfverberg, M.: HFST — a system for creating NLP tools. In: Mahlow, C., Piotrowski, M. (eds.) SFCM 2013. CCIS, vol. 380, pp. 53–71. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  14. Lindén, K., Axelson, E., Hardwick, S., Pirinen, T.A., Silfverberg, M.: HFST—framework for compiling and applying morphologies. In: Mahlow, C., Piotrowski, M. (eds.) SFCM 2011. CCIS, vol. 100, pp. 67–85. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  15. Lindén, K., Silfverberg, M., Pirinen, T.: HFST tools for morphology – an efficient open-source package for construction of morphological analyzers. In: Mahlow, C., Piotrowski, M. (eds.) SFCM 2009. CCIS, vol. 41, pp. 28–47. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  16. Lindén, K., Carlson, L.: FinnWordNet – WordNet p finska via ttning (in Swedish with an English abstract). LexicoNordica – Nordic J. Lexicogr. 17, 119–140 (2010)

    Google Scholar 

  17. Miller, G.A.: Wordnet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)

    CrossRef  Google Scholar 

  18. Pal, C., Sutton, C., McCallum, A.: Sparse forward-backward using minimum divergence beams for fast training of conditional random fields. In: 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2006 Proceedings, vol. 5, pp. V-581–V-584. IEEE (2006)

    Google Scholar 

  19. Silfverberg, M., Ruokolainen, T., Lindén, K., Kurimo, M.: Part-of-speech tagging using conditional random fields: exploiting sub-label dependencies for improved accuracy. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 259–264. Association for Computational Linguistics (2014)

    Google Scholar 

  20. Silfverberg, M., Ruokolainen, T., Lindén, K., Kurimo, M.: FinnPos: an open-source morphological tagging and lemmatization toolkit for finnish. In: Language Resources and Evaluation (Forthcoming) (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krister Lindén .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Lindén, K., Hardwick, S., Silfverberg, M., Axelson, E. (2015). Using HFST—Helsinki Finite-State Technology for Recognizing Semantic Frames. In: Mahlow, C., Piotrowski, M. (eds) Systems and Frameworks for Computational Morphology. SFCM 2015. Communications in Computer and Information Science, vol 537. Springer, Cham. https://doi.org/10.1007/978-3-319-23980-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23980-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23978-1

  • Online ISBN: 978-3-319-23980-4

  • eBook Packages: Computer ScienceComputer Science (R0)