Using HFST—Helsinki Finite-State Technology for Recognizing Semantic Frames

  • Krister Lindén
  • Sam Hardwick
  • Miikka Silfverberg
  • Erik Axelson
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 537)


To recognize semantic frames in languages with a rich morphology, we need computational morphology. In this paper, we look at one particular framework, HFST–Helsinki Finite-State Technology, and how to use it for recognizing semantic frames in context. HFST enables tokenization, morphological analysis, tagging, and frame annotation in one single framework.


Noun Phrase Conditional Random Field Training Corpus Frame Identification British National Corpus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Brants, T.: TnT: a statistical part-of-speech tagger. In: Proceedings of the Sixth Conference on Applied Natural Language Processing, pp. 224–231 (2000)Google Scholar
  2. 2.
    Collins, M.: Discriminative training methods for hidden markov models: theory and experiments with perceptron algorithms. In: Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing, EMNLP 2002, vol. 10, pp. 1–8. Association for Computational Linguistics, Stroudsburg (2002)Google Scholar
  3. 3.
    Das, D., Chen, D., Martins, A., Schneider, N., Smith, N.: Frame-semantic parsing. Comput. Linguist. 40(1), 9–56 (2014)CrossRefGoogle Scholar
  4. 4.
    Erk, K., Pado, S.: Shalmaneser – a flexible toolbox for semantic role assignment. In: Proceedings of the Fifth International Conference on Language Resources and Evaluation (LREC2006) (2006)Google Scholar
  5. 5.
    Fillmore, C.J.: Frame semantics and the nature of language. Annals New York Acad. Sci.: Conf. Origin Dev. Lang. Speech 280(1), 20–32 (1976)CrossRefGoogle Scholar
  6. 6.
    Grzegorz Chrupala, G.D., van Genabith, J.: Learning morphology with Morfette. In: Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC 2008). European Language Resources Association (ELRA), Marrakech, May 2008Google Scholar
  7. 7.
    Harwick, S., Silfverberg, M., Lindén, K.: Extracting semantic frames using hfst-pmatch. In: Proceedings from NODALIDA 2015, pp. 305–308. Vilnius, May 2015Google Scholar
  8. 8.
    Huang, L., Fayong, S., Guo, Y.: Structured perceptron with inexact search. In: Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 142–151 (2012)Google Scholar
  9. 9.
    Johansson, R., Nugues, P.: LTH: semantic structure extraction using non-projective dependency trees. In: Proceedings of SEMEVAL 2007 (2007)Google Scholar
  10. 10.
    Karttunen, L.: Beyond morphology: pattern matching with FST. In: Mahlow, C., Piotrowski, M. (eds.) SFCM 2011. CCIS, vol. 100, pp. 1–13. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  11. 11.
    Kokkinakis, D., Niemi, J., Hardwick, S., Lindén, K., Borin, L.: HFST-sweNER - a new NER resource for Swedish. In: Proceedings of the 9th Edition of the Language Resources and Evaluation Conference (LREC 2014), Reykjavik 26–31 May 2014, pp. 2537–2543 (2014)Google Scholar
  12. 12.
    Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: Proceedings of the Eighteenth International Conference on Machine Learning, ICML 2001, pp. 282–289. Morgan Kaufmann Publishers Inc., San Francisco (2001)Google Scholar
  13. 13.
    Lindén, K., Axelson, E., Drobac, S., Hardwick, S., Kuokkala, J., Niemi, J., Pirinen, T.A., Silfverberg, M.: HFST — a system for creating NLP tools. In: Mahlow, C., Piotrowski, M. (eds.) SFCM 2013. CCIS, vol. 380, pp. 53–71. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  14. 14.
    Lindén, K., Axelson, E., Hardwick, S., Pirinen, T.A., Silfverberg, M.: HFST—framework for compiling and applying morphologies. In: Mahlow, C., Piotrowski, M. (eds.) SFCM 2011. CCIS, vol. 100, pp. 67–85. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  15. 15.
    Lindén, K., Silfverberg, M., Pirinen, T.: HFST tools for morphology – an efficient open-source package for construction of morphological analyzers. In: Mahlow, C., Piotrowski, M. (eds.) SFCM 2009. CCIS, vol. 41, pp. 28–47. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  16. 16.
    Lindén, K., Carlson, L.: FinnWordNet – WordNet p finska via ttning (in Swedish with an English abstract). LexicoNordica – Nordic J. Lexicogr. 17, 119–140 (2010)Google Scholar
  17. 17.
    Miller, G.A.: Wordnet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
  18. 18.
    Pal, C., Sutton, C., McCallum, A.: Sparse forward-backward using minimum divergence beams for fast training of conditional random fields. In: 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2006 Proceedings, vol. 5, pp. V-581–V-584. IEEE (2006)Google Scholar
  19. 19.
    Silfverberg, M., Ruokolainen, T., Lindén, K., Kurimo, M.: Part-of-speech tagging using conditional random fields: exploiting sub-label dependencies for improved accuracy. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 259–264. Association for Computational Linguistics (2014)Google Scholar
  20. 20.
    Silfverberg, M., Ruokolainen, T., Lindén, K., Kurimo, M.: FinnPos: an open-source morphological tagging and lemmatization toolkit for finnish. In: Language Resources and Evaluation (Forthcoming) (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Krister Lindén
    • 1
  • Sam Hardwick
    • 1
  • Miikka Silfverberg
    • 1
  • Erik Axelson
    • 1
  1. 1.University of HelsinkiHelsinkiFinland

Personalised recommendations