Several Multiplexes in the Same City: The Role of Socioeconomic Differences in Urban Mobility

  • Laura Lotero
  • Alessio Cardillo
  • Rafael Hurtado
  • Jesús Gómez-GardeñesEmail author
Part of the Understanding Complex Systems book series (UCS)


In this work we analyze the architecture of real urban mobility networks from the multiplex perspective. In particular, based on empirical data about the mobility patterns in the cities of Bogotá and Medellín, each city is represented by six multiplex networks, each one representing the origin-destination trips performed by a subset of the population corresponding to a particular socioeconomic status. The nodes of each multiplex are the different urban locations whereas links represent the existence of a trip from one node (origin) to another (destination). On the other hand, the different layers of each multiplex correspond to the different existing transportation modes. By exploiting the characterization of multiplex transportation networks combining different transportation modes, we aim at characterizing the mobility patterns of each subset of the population. Our results show that the socioeconomic characteristics of the population have an extraordinary impact in the layer organization of these multiplex systems.


Cluster Coefficient Mobility Pattern Average Path Length Transportation Mode Subset Versus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge financial support from the European Commission through FET IP projects MULTIPLEX (Grant No. 317532) and PLEXMATH (Grant No. 317614), from the Spanish MINECO under projects FIS2011-25167 and FIS2012-38266-C02-01, from the Departamento de Industria e Innovación del Gobierno de Aragón and Fondo Social Europeo (Grupo FENOL), and from the Universidad Nacional de Colombia under grants HERMES 19010 and HERMES 16007. JGG is supported by the Spanish MINECO through the Ramón y Cajal program. AC acknowledge the financial support of SNSF through the project CRSII2_147609. We thank Area Metropolitana del Valle de Aburrá, in Medellín, and Secretaría Distrital de Movilidad, in Bogotá, for the Origin-Destination Surveys Datasets.


  1. 1.
    Stouffer, S.A.: Intervening opportunities: a theory relating mobility and distance. Am. Sociol. Rev. 5, 845–867 (1940)CrossRefGoogle Scholar
  2. 2.
    Zipf, G.K.: The P 1 P 2D hypothesis: on the intercity movement of persons. Am. Sociol. Rev. 11, 677–686 (1946)CrossRefGoogle Scholar
  3. 3.
    Erlander, S., Stewart, N.: The Gravity Model in Transportation Analysis: Theory and Extensions. VSP, Utrecht (1990)zbMATHGoogle Scholar
  4. 4.
    Batty, M.: The size, scale, and shape of cities. Science 319, 769–771 (2008)CrossRefADSGoogle Scholar
  5. 5.
    Porta, S., Latora, V., Wang, F., Rueda, S., Strano, E., Scellato, S., Cardillo, A., Belli, E., Cárdenas, F., Cormenzana, B., Latora, L.: Street centrality and location of economic activities in Barcelona. Urban Stud. 49, 1471–1488 (2011)CrossRefGoogle Scholar
  6. 6.
    Porta, S., Latora, V., Wang, F., Strano, E., Cardillo, A., Scellato, S., Iacoviello, V., Messora, R.: Street centrality and densities of retail and services in Bologna, Italy. Environ. Plan. B Plan. Design 36, 450–465 (2009)CrossRefGoogle Scholar
  7. 7.
    Guimerá, R., Mossa, S., Turtschi, A., Amaral, L.A.N.: The worldwide air transportation network: anomalous centrality, community structure, and cities’ global roles. Proc. Nat. Acad. Sci. U. S. A. 102, 7794–7799 (2005)CrossRefADSMathSciNetzbMATHGoogle Scholar
  8. 8.
    Asgari, F., Gauthier, V., Becker, M.: A survey on human mobility and its applications. arXiv:1307.0814 (2013)Google Scholar
  9. 9.
    Yan, X.-Y., Han, X.-P., Wang, B.-H., Zhou, T.: Diversity of individual mobility patterns and emergence of aggregated scaling laws. Sci. Rep. 3, 2678 (2013)ADSGoogle Scholar
  10. 10.
    González, M.C., Hidalgo, C.A., Barabási, A.-L.: Understanding individual human mobility patterns. Nature 453, 779–782 (2008)CrossRefADSGoogle Scholar
  11. 11.
    Wang, P., Hunter, T., Bayen, A.M., Schechtner, K., González, M.C.: Understanding road usage patterns in urban areas. Sci. Rep. 2, 1001 (2012)ADSGoogle Scholar
  12. 12.
    Roth, C., Kang, S.M., Batty, M., Barthélemy, M.: Structure of urban movements: polycentric activity and entangled hierarchical flows. PLoS ONE 6, e15923 (2011)CrossRefADSGoogle Scholar
  13. 13.
    Helbing, D., Buzna, L., Johansson, A., Werner, T.: Self-organized pedestrian crowd dynamics: experiments, simulations, and design solutions. Trans. Sci. 39, 1–24 (2005)CrossRefGoogle Scholar
  14. 14.
    Bazzani, A., Giorgini, B., Rambaldi, S., Turchetti, G.: Complexcity: modeling urban mobility. Adv. Complex Syst. (ACS) 10, 255–270 (2007)Google Scholar
  15. 15.
    Song, C., Koren, T., Wang, P., Barabási, A.-L.: Modelling the scaling properties of human mobility. Nat. Phys. 6, 818–823 (2010)CrossRefGoogle Scholar
  16. 16.
    Simini, F., González, M.C., Maritan, A., Barabási, A.-L.: A universal model for mobility and migration patterns. Nature 484, 96–100 (2012)CrossRefADSGoogle Scholar
  17. 17.
    Eubank, S., Guclu, H., Kumar, V., Marathe, M.: Modelling disease outbreaks in realistic urban social networks. Nature 429, 180–184, (2004)CrossRefADSGoogle Scholar
  18. 18.
    Colizza, V., Barrat, A., Barthélemy, M., Vespignani, A.: The role of the airline transportation network in the prediction and predictability of global epidemics. Proc. Nat. Acad. Sci. U. S. A. 103, 2015–2020 (2006)CrossRefADSzbMATHGoogle Scholar
  19. 19.
    Kleinberg, J.: Computing: the wireless epidemic. Nature 449, 287 (2007)CrossRefADSGoogle Scholar
  20. 20.
    Balcan, D., Colizza, V., Gonçalves, B., Hu, H., Ramasco, J.J., Vespignani, A.: Multiscale mobility networks and the spatial spreading of infectious diseases. Proc. Nat. Acad. Sci. U. S. A. 106, 21484 (2009)CrossRefADSGoogle Scholar
  21. 21.
    Tizzoni, M., Bajardi, P., Poletto, C., Ramasco, J.J., Balcan, D., Gonçalves, B., Perra, N., Colizza, V., Vespignani, A.: Real-time numerical forecast of global epidemic spreading: case study of 2009 A/H1N1pdm. BMC Med. 10, 165 (2012)CrossRefGoogle Scholar
  22. 22.
    Poletto, C., Tizzoni, M., Colizza, V.: Human mobility and time spent at destination: impact on spatial epidemic spreading. J. Theor. Bio. 338, 41–58 (2013)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47 (2002)CrossRefADSMathSciNetzbMATHGoogle Scholar
  24. 24.
    Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)CrossRefADSMathSciNetzbMATHGoogle Scholar
  25. 25.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.: Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006)CrossRefADSMathSciNetGoogle Scholar
  26. 26.
    Barthélemy, M.: Spatial networks. Phys. Rep. 499, 1–101 (2011)CrossRefADSMathSciNetGoogle Scholar
  27. 27.
    Zaltz Austwick, M., O’Brien, O., Strano, E., Viana, M.: The structure of spatial networks and communities in bicycle sharing systems. PLoS ONE 8, e74685 (2013)CrossRefADSGoogle Scholar
  28. 28.
    De Domenico, M., Solé-Ribalta, A., Cozzo, E., Kivelä, M., Moreno, Y., Porter, M.A., Arenas, A.: Mathematical formulation of multilayer networks. Phys. Rev. X 3, 041022 (2013)Google Scholar
  29. 29.
    Boccaletti, S., Bianconi, G., Criado, R., Del Genio, C.I., Gómez-Gardeñes, J., Romance, M., Sendiña-Nadal, I., Wang, Z., Zanin, M.: The structure and dynamics of multilayer networks. Phys. Rep. 544(1), 1–122 (2014)CrossRefADSMathSciNetGoogle Scholar
  30. 30.
    Kivelä, M., Arenas, A., Barthélemy, M., Gleeson, J.P., Moreno, Y., Porter, M.A.: Multilayer networks. J. Complex Netw. 2(3), 203–271 (2014)CrossRefGoogle Scholar
  31. 31.
    De Domenico, M., Solé-Ribalta, A., Gómez, S., Arenas, A.: Navigability of interconnected networks under random failures. Proc. Nat. Acad. Sci. U. S. A. 111(23), 8351–8356 (2014)CrossRefADSMathSciNetGoogle Scholar
  32. 32.
    Kurant, M., Thiran, P.: Layered complex networks. Phys. Rev. Lett. 96, 138701 (2006)CrossRefADSGoogle Scholar
  33. 33.
    Cardillo, A., Zanin, M., Gómez-Gardeñes, J., Romance, M., García del Amo, A.J., Boccaletti, S.: Modeling the multi-layer nature of the European air transport network: resilience and passengers re-scheduling under random failures. Eur. Phys. J. Spec. Top. 215, 23–33 (2013)Google Scholar
  34. 34.
    Cardillo, A., Gómez-Gardeñes, J., Zanin, M., Romance, M., Papo, D., Del Pozo, F., Boccaletti, S.: Emergence of network features from multiplexity. Sci. Rep. 3, 1344 (2013)CrossRefADSGoogle Scholar
  35. 35.
    Secretaria Distrital de Movilidad: Informe de indicadores Encuesta de Movilidad de Bogotá 2011. Bogotá: Unión Temporal Steer Davies & Gleave Limited – Centro Nacional de Consultoría (2011). Retrieved from
  36. 36.
    AREA Metropolitana del Valle de Aburrá: Capítulo 2: Diagnóstico. Formulación del Plan Maestro de Movilidad para la Región Metropolitana del Valle de Aburrá. Informe Final, pp. 21–72 (2006). Retrieved from:
  37. 37.
    Barigozzi, M., Fagiolo, G., Garlaschelli, D.: Multinetwork of international trade: a commodity-specific analysis. Phys. Rev. E 81, 046104 (2010)CrossRefADSGoogle Scholar
  38. 38.
    Bianconi, G.: Statistical mechanics of multiplex networks: entropy and overlap. Phys. Rev. E 87, 062806 (2013)CrossRefADSGoogle Scholar
  39. 39.
    Kapferer, B.: Norms and the manipulation of relationships in a work context. In: Mitchell, J.C. (ed.) Social Networks in Urban Situations: Analyses of Personal Relationships in Central African Towns. Manchester University Press, Manchester (1969)Google Scholar
  40. 40.
    Parshani, R., Rozenblat, C., Ietri, D., Ducruet, C., Havlin, S.: Inter-similarity between coupled networks. Europhys. Lett. 92, 68002 (2010)CrossRefADSGoogle Scholar
  41. 41.
    Battiston, F., Nicosia, V., Latora, V.: Structural measures for multiplex networks. Phys. Rev. E 89, 032804 (2014)CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Laura Lotero
    • 1
  • Alessio Cardillo
    • 2
    • 3
  • Rafael Hurtado
    • 4
  • Jesús Gómez-Gardeñes
    • 3
    • 5
    Email author
  1. 1.Departamento de Ciencias de la Computación y de la DecisiónMedellínColombia
  2. 2.Laboratoire de Biophysique StatistiqueÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
  3. 3.Instituto de Biocomputación y Física de Sistemas ComplejosUniversidad de ZaragozaZaragozaSpain
  4. 4.Departamento de FísicaUniversidad Nacional de ColombiaBogotáColombia
  5. 5.Departamento de Física de la Materia CondensadaUniversidad de ZaragozaZaragozaSpain

Personalised recommendations