Advertisement

The Cacophony of Interconnected Networks

  • Vitor H. P. LouzadaEmail author
  • Nuno A. M. Araújo
  • José S. AndradeJr.
  • Hans J. Herrmann
Chapter
  • 1.4k Downloads
Part of the Understanding Complex Systems book series (UCS)

Abstract

The harmony of an orchestra emerges from the individual effort of musicians towards mutual synchronization of their tempi. When the orchestra is split between two concert halls communicating via Internet, a time delay is imposed which might hinder synchronization. We present this type of system as two interconnected networks of oscillators with a time delay and analyze its dynamics as a function of the couplings and communication lag. We describe a breathing synchronization regime, namely, for a wide range of parameters, two groups emerge in the orchestra within the same concert hall playing at different tempi. Each group has a mirror in the other hall, one group is in phase and the other in anti-phase with their mirrors. For strong couplings, a phase shift between halls might occur. The implications of our findings on other interconnected systems are also discussed.

Keywords

Interconnected Network Physarum Polycephalum Couple Network Functional Brain Network Kuramoto Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Authors would like to thank the Swiss National Science Foundation under contract 200021 126853, the CNPq, Conselho Nacional de Desenvolvimento Científico e Tecnológico - Brasil, the CNPq/FUNCAP Pronex grant, the ETH Zürich Risk Center, and the INCT-SC-Brasil for financial support. This work was also supported by grant number FP7-319968 of the European Research Council. NA acknowledges financial support from the Portuguese Foundation for Science and Technology (FCT) under Contract no. IF/00255/2013.

References

  1. 1.
    Acebrón, J.A., Bonilla, L.L., Vicente, C.J.P., Ritort, F., Spigler, R.: The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137–185 (2005)CrossRefADSGoogle Scholar
  2. 2.
    Araújo, N.A.M., Seybold, H., Baram, R.M., Herrmann, H.J., Andrade Jr, J.S.: Optimal synchronizability of bearings. Phys. Rev. Lett. 110, 064,106 (2013)Google Scholar
  3. 3.
    Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex networks. Phys. Rep. 469, 93–153 (2008)CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Barrat, A., Barthelemy, M., Vespignani, A.: Dynamical Processes on Complex Networks. Cambridge University Press, Cambridge (2008)CrossRefzbMATHGoogle Scholar
  5. 5.
    Boccaletti, S.: The Synchronized Dynamics of Complex Systems. Elsevier, Amsterdam (2008)CrossRefzbMATHGoogle Scholar
  6. 6.
    Boccaletti, S., Kurths, J., Osipov, G., Valladares, D.L., Zhou, C.S.: The synchronization of chaotic systems. Phys. Rep. 366, 1–101 (2002)CrossRefADSMathSciNetzbMATHGoogle Scholar
  7. 7.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.: Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006)CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Brummitt, C.D., D’Souza, R.M., Leicht, E.A.: Suppressing cascades of load in interdependent networks. Proc. Natl. Acad. Sci. U. S. A. 109, E680–E689 (2011)CrossRefGoogle Scholar
  9. 9.
    Buldyrev, S.V., Parshani, R., Paul, G., Stanley, H.E., Havlin, S.: Catastrophic cascade of failures in interdependent networks. Nature 464, 1025–1028 (2010)CrossRefADSGoogle Scholar
  10. 10.
    Cardillo, A., Gómez-Gardeñes, J., Zanin, M., Romance, M., Papo, D., Pozo, F.D., Boccaletti, S.: Emergence of network features from multiplexity. Sci. Rep. 3, 1344 (2013)CrossRefADSGoogle Scholar
  11. 11.
    Choi, M.Y., Kim, H.J., Kim, D., Hong, H.: Synchronization in a system of globally coupled oscillators with time delay. Phys. Rev. E 61, 371–381 (2000)CrossRefADSGoogle Scholar
  12. 12.
    Driessen, P.F., Darcie, T.E., Pillay, B.: The effects of network delay on tempo in musical performance. Comput. Music J. 35, 76–89 (2011)CrossRefGoogle Scholar
  13. 13.
    Duke, C.: Prosperity, complexity and science. Nat. Phys. 2, 426–428 (2006)CrossRefGoogle Scholar
  14. 14.
    Gao, J., Buldyrev, S.V., Stanley, H.E., Havlin, S.: Networks formed from interdependent networks. Nat. Phys. 8, 40–48 (2011)CrossRefGoogle Scholar
  15. 15.
    Gómez, S., Díaz-Guilera, A., Gómez-Gardeñes, J., Pérez-Vicente, C.J., Moreno, Y., Arenas, A.: Diffusion dynamics on multiplex networks. Phys. Rev. Lett. 110, 028,701 (2013)Google Scholar
  16. 16.
    Helbing, D.: Systemic Risks in Society and Economics. Paper prepared for IRGC Workshop on Emerging Risks, Geneva (2009)Google Scholar
  17. 17.
    Kuramoto, Y., Nishikawa, I.: Statistical macrodynamics of large dynamical systems. Case of a phase transition in oscillator communities. J. Stat. Phys. 49, 569–605 (1987)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Li, C., Chen, G.: Synchronization in general complex dynamical networks with coupling delays. Physica A 343, 263–278 (2004)CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Li, C., Sun, W., Kurths, J.: Synchronization between two coupled complex networks. Phys. Rev. E 76, 046,204 (2007)Google Scholar
  20. 20.
    Louzada, V.H.P., Araújo, N.A.M., Andrade Jr, J.S., Herrmann, H.J.: How to suppress undesired synchronization. Sci. Rep. 2, 658 (2012). doi:10.1038/srep00658CrossRefADSGoogle Scholar
  21. 21.
    Louzada, V.H.P., Araújo, N.A.M., Andrade Jr, J.S., Herrmann, H.J.: Breathing synchronization in interconnected networks. Sci. Rep. 3, 3289 (2013)CrossRefADSGoogle Scholar
  22. 22.
    Lü, J., Chen, G.: A time-varying complex dynamical network model and its controlled synchronization criteria. IEEE Trans. Autom. Control 50, 841–846 (2005)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Mao, X.: Stability switches, bifurcation, and multi-stability of coupled networks with time delays. Appl. Math. Comput. 218, 6263–6274 (2012)CrossRefMathSciNetzbMATHGoogle Scholar
  24. 24.
    Motter, A.E., Zhou, C.S., Kurths, J.: Enhancing complex-network synchronization. Europhys. Lett. 69, 334–340 (2005)CrossRefADSGoogle Scholar
  25. 25.
    Néda, Z., Ravasz, E., Vicsek, T., Brechet, Y., Barabási, A.: Physics of the rhythmic applause. Phys. Rev. E 61, 6987–6992 (2000)CrossRefADSGoogle Scholar
  26. 26.
    Osipov, G., Kurths, J., Zhou, C.: Synchronization in Oscillatory Networks. Springer, New York (2007)CrossRefzbMATHGoogle Scholar
  27. 27.
    Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences, vol. 12. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  28. 28.
    Schneider, C.M., Moreira, A.A., Andrade Jr, J.S., Havlin, S., Herrmann, H.J.: Mitigation of malicious attacks on networks. Proc. Natl. Acad. Sci. U. S. A. 108, 3838–3841 (2011)CrossRefADSGoogle Scholar
  29. 29.
    Schuster, H.G., Wagner, P.: Mutual entrainment of two limit cycle oscillators with time delayed coupling. Prog. Theor. Phys. 81, 939–945 (1989)CrossRefADSMathSciNetGoogle Scholar
  30. 30.
    Shang, Y., Chen, M., Kurths, J.: Generalized synchronization of complex networks. Phys. Rev. E 80, 027,201 (2009)Google Scholar
  31. 31.
    Strogatz, S.H.: The Emerging Science of Spontaneous Order. Hyperion, New York (2003)Google Scholar
  32. 32.
    Takamatsu, A., Fujii, T., Endo, I.: Time delay effect in a living coupled oscillator system with the plasmodium of Physarum polycephalum. Phys. Rev. Lett. 85, 2026 (2000)CrossRefADSGoogle Scholar
  33. 33.
    Takamatsu, A., Takaba, E., Takizawa, G.: Environment-dependent morphology in plasmodium of true slime mold Physarum polycephalum and a network growth model. J. Theor. Biol. 256, 29–44 (2009)CrossRefMathSciNetGoogle Scholar
  34. 34.
    Wang, X.F.: Complex networks: topology, dynamics and synchronization. Int. J. Bifucart. Chaos 12, 885–916 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  35. 35.
    Wu, X., Zheng, W.X., Zhou, J.: Generalized outer synchronization between complex dynamical networks. Chaos 19, 013,109 (2009)Google Scholar
  36. 36.
    Yeung, M.K., Strogatz, S.H.: Time delay in the Kuramoto model of coupled oscillators. Phys. Rev. Lett. 82, 648 (1999)CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Vitor H. P. Louzada
    • 1
    Email author
  • Nuno A. M. Araújo
    • 2
    • 3
  • José S. AndradeJr.
    • 1
    • 4
  • Hans J. Herrmann
    • 1
    • 4
  1. 1.Computational Physics, IfBETH ZürichZürichSwitzerland
  2. 2.Departamento de Física, Faculdade de CiênciasUniversidade de LisboaLisboaPortugal
  3. 3.Centro de Física Teórica e ComputacionalUniversidade de LisboaLisboaPortugal
  4. 4.Departamento de FísicaUniversidade Federal do CearáFortalezaBrazil

Personalised recommendations