Advertisement

How Much Interconnected Should Networks be for Cooperation to Thrive?

  • Zhen Wang
  • Attila Szolnoki
  • Matjaž PercEmail author
Chapter
  • 1.4k Downloads
Part of the Understanding Complex Systems book series (UCS)

Abstract

While the consensus is that interconnectivity between networks does promote cooperation by means of organizational complexity and enhanced reciprocity that is out of reach on isolated networks, we here address the question just how much interconnectivity there should be. The more the better according to naive intuition, yet we show that in fact only an intermediate density of sufficiently strong interactions between networks is optimal for the evolution of cooperation. This is due to an intricate interplay between the heterogeneity that causes an asymmetric strategy flow because of the additional links between the networks, and the independent formation of cooperative patterns on each individual network. Presented results are robust to variations of the strategy updating rule, the topology of interconnected networks, and the governing social dilemma, and thus indicate a high degree of universality. We also outline future directions for research based on coevolutionary games and survey existing work.

Keywords

Cluster Coefficient Interconnected Network Evolutionary Game Social Dilemma External Link 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This research was supported by the Hungarian National Research Fund (Grant K-101490), TAMOP-4.2.2.A-11/1/KONV-2012-0051, and the Slovenian Research Agency (Grants J1-4055 and P5-0027).

References

  1. 1.
    Nowak, M.A.: Five rules for the evolution of cooperation. Science 314, 1560–1563 (2006)CrossRefADSGoogle Scholar
  2. 2.
    Nowak, M.A., May, R.M.: Evolutionary games and spatial chaos. Nature 359, 826–829 (1992)CrossRefADSGoogle Scholar
  3. 3.
    Hauert, C., Doebeli, M.: Spatial structure often inhibits the evolution of cooperation in the snowdrift game. Nature 428, 643–646 (2004)CrossRefADSGoogle Scholar
  4. 4.
    Gracia-Lázaro, C., Cuesta, J., Sánchez, A., Moreno, Y.: Human behavior in prisoner’s dilemma experiments suppresses network reciprocity. Sci. Rep. 2, 325 (2012)CrossRefADSGoogle Scholar
  5. 5.
    Gracia-Lázaro, C., Ferrer, A., Ruiz, G., Tarancón, A., Cuesta, J., Sánchez, A., Moreno, Y.: Heterogeneous networks do not promote cooperation when humans play a prisoner’s dilemma. Proc. Natl. Acad. Sci. U. S. A. 109, 12922–12926 (2012)CrossRefADSGoogle Scholar
  6. 6.
    Szabó, G., Fáth, G.: Evolutionary games on graphs. Phys. Rep. 446, 97–216 (2007)CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Roca, C.P., Cuesta, J.A., Sánchez, A.: Evolutionary game theory: temporal and spatial effects beyond replicator dynamics. Phys. Life Rev. 6, 208–249 (2009)CrossRefADSGoogle Scholar
  8. 8.
    Perc, M., Szolnoki, A.: Coevolutionary games – a mini review. BioSystems 99, 109–125 (2010)CrossRefGoogle Scholar
  9. 9.
    Perc, M., Gómez-Gardeñes, J., Szolnoki, A., Floría, L.M., Moreno, Y.: Evolutionary dynamics of group interactions on structured populations: a review. J. R. Soc. Interface 10, 20120997 (2013)CrossRefGoogle Scholar
  10. 10.
    Abramson, G., Kuperman, M.: Social games in a social network. Phys. Rev. E 63, 030901(R) (2001)Google Scholar
  11. 11.
    Kim, B.J., Trusina, A., Holme, P., Minnhagen, P., Chung, J.S., Choi, M.Y.: Dynamic instabilities induced by asymmetric influence: prisoner’s dilemma game in small-world networks. Phys. Rev. E 66, 021907 (2002)CrossRefADSGoogle Scholar
  12. 12.
    Masuda, N., Aihara, K.: Spatial prisoner’s dilemma optimally played in small-world networks. Phys. Lett. A 313, 55–61 (2003)CrossRefADSMathSciNetzbMATHGoogle Scholar
  13. 13.
    Tomassini, M., Luthi, L., Giacobini, M.: Hawks and doves games on small-world networks. Phys. Rev. E 73, 016132 (2006)CrossRefADSGoogle Scholar
  14. 14.
    Fu, F., Liu, L.-H., Wang, L.: Evolutionary prisoner’s dilemma on heterogeneous Newman-Watts small-world network. Eur. Phys. J. B 56, 367–372 (2007)CrossRefADSGoogle Scholar
  15. 15.
    Santos, F.C., Pacheco, J.M.: Scale-free networks provide a unifying framework for the emergence of cooperation. Phys. Rev. Lett. 95, 098104 (2005)CrossRefADSGoogle Scholar
  16. 16.
    Santos, F.C., Pacheco, J.M., Lenaerts, T.: Evolutionary dynamics of social dilemmas in structured heterogeneous populations. Proc. Natl. Acad. Sci. USA 103, 3490–3494 (2006)CrossRefADSGoogle Scholar
  17. 17.
    Gómez-Gardeñes, J., Campillo, M., Floría, L.M., Moreno, Y.: Dynamical organization of cooperation in complex networks. Phys. Rev. Lett. 98, 108103 (2007)CrossRefADSGoogle Scholar
  18. 18.
    Rong, Z., Li, X., Wang, X.: Roles of mixing patterns in cooperation on a scale-free networked game. Phys. Rev. E 76, 027101 (2007)CrossRefADSGoogle Scholar
  19. 19.
    Masuda, N.: Participation costs dismiss the advantage of heterogeneous networks in evolution of cooperation. Proc. R. Soc. B 274, 1815–1821 (2007)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Tomassini, M., Luthi, L., Pestelacci, E.: Social dilemmas and cooperation in complex networks. Int. J. Mod. Phys. C 18, 1173–1185 (2007)CrossRefADSzbMATHGoogle Scholar
  21. 21.
    Szolnoki, A., Perc, M., Danku, Z.: Towards effective payoffs in the prisoner’s dilemma game on scale-free networks. Physica A 387, 2075–2082 (2008)CrossRefADSGoogle Scholar
  22. 22.
    Assenza, S., Gómez-Gardeñes, J., Latora, V.: Enhancement of cooperation in highly clustered scale-free networks. Phys. Rev. E 78, 017101 (2008)CrossRefADSGoogle Scholar
  23. 23.
    Santos, F.C., Santos, M.D., Pacheco, J.M.: Social diversity promotes the emergence of cooperation in public goods games. Nature 454, 213–216 (2008)CrossRefADSGoogle Scholar
  24. 24.
    Peña, J., Volken, H., Pestelacci, E., Tomassini, M.: Conformity hinders the evolution of cooperation on scale-free networks. Phys. Rev. E 80, 016110 (2009)CrossRefADSGoogle Scholar
  25. 25.
    Poncela, J., Gómez-Gardeñes, J., Moreno, Y.: Cooperation in scale-free networks with limited associative capacities. Phys. Rev. E 83, 057101 (2011)CrossRefADSGoogle Scholar
  26. 26.
    Brede, M.: Playing against the fittest: a simple strategy that promotes the emergence of cooperation. EPL 94, 30003 (2011)CrossRefADSGoogle Scholar
  27. 27.
    Tanimoto, J., Brede, M., Yamauchi, A.: Network reciprocity by coexisting learning and teaching strategies. Phys. Rev. E 85, 032101 (2012)CrossRefADSGoogle Scholar
  28. 28.
    Pinheiro, F., Pacheco, J., Santos, F.: From local to global dilemmas in social networks. PLoS One 7, e32114 (2012)CrossRefADSGoogle Scholar
  29. 29.
    Simko, G.I., Csermely, P.: Nodes having a major influence to break cooperation define a novel centrality measure: game centrality. PLoS One 8, e67159 (2013)CrossRefADSGoogle Scholar
  30. 30.
    Ebel, H., Bornholdt, S.: Coevolutionary games on networks. Phys. Rev. E 66, 056118 (2002)CrossRefADSGoogle Scholar
  31. 31.
    Zimmermann, M.G., Eguíluz, V., Miguel, M.S.: Coevolution of dynamical states and interactions in dynamic networks. Phys. Rev. E 69, 065102(R) (2004)Google Scholar
  32. 32.
    Pacheco, J.M., Traulsen, A., Nowak, M.A.: Coevolution of strategy and structure in complex networks with dynamical linking. Phys. Rev. Lett. 97, 258103 (2006)CrossRefADSGoogle Scholar
  33. 33.
    Santos, F.C., Pacheco, J.M., Lenaerts, T.: Cooperation prevails when individuals adjust their social ties. PLoS Comput. Biol. 2, 1284–1290 (2006)CrossRefGoogle Scholar
  34. 34.
    Fu, F., Chen, X., Liu, L., Wang, L.: Promotion of cooperation induced by the interplay between structure and game dynamics. Physica A 383, 651–659 (2007)CrossRefADSGoogle Scholar
  35. 35.
    Tanimoto, J.: Dilemma solving by coevolution of networks and strategy in a 2 × 2 game. Phys. Rev. E 76, 021126 (2007)CrossRefADSGoogle Scholar
  36. 36.
    Lee, S., Holme, P., Wu, Z.-X.: Emergent hierarchical structures in multiadaptive games. Phys. Rev. Lett. 106, 028702 (2011)CrossRefADSGoogle Scholar
  37. 37.
    Gómez-Gardeñes, J., Romance, M., Criado, R., Vilone, D., Sánchez, A.: Evolutionary games defined at the network mesoscale: the public goods game. Chaos 21, 016113 (2011)CrossRefADSMathSciNetGoogle Scholar
  38. 38.
    Wang, Z., Szolnoki, A., Perc, M.: Evolution of public cooperation on interdependent networks: the impact of biased utility functions. EPL 97, 48001 (2012)CrossRefADSGoogle Scholar
  39. 39.
    Wang, Z., Szolnoki, A., Perc, M.: Interdependent network reciprocity in evolutionary games. Sci. Rep. 3, 1183 (2013)ADSGoogle Scholar
  40. 40.
    Gómez-Gardeñes, J., Reinares, I., Arenas, A., Floría, L.M.: Evolution of cooperation in multiplex networks. Sci. Rep. 2, 620 (2012)CrossRefGoogle Scholar
  41. 41.
    Gómez-Gardeñes, J., Gracia-Lázaro, C., Floría, L.M., Moreno, Y.: Evolutionary dynamics on interdependent populations. Phys. Rev. E 86, 056113 (2012)CrossRefADSGoogle Scholar
  42. 42.
    Wang, B., Chen, X., Wang, L.: Probabilistic interconnection between interdependent networks promotes cooperation in the public goods game. J. Stat. Mech. 2012, P11017 (2012)Google Scholar
  43. 43.
    Buldyrev, S.V., Parshani, R., Paul, G., Stanley, H.E., Havlin, S.: Catastrophic cascade of failures in interdependent networks. Nature 464, 1025–1028 (2010)CrossRefADSGoogle Scholar
  44. 44.
    Huang, X., Gao, J., Buldyrev, S.V., Havlin, S., Stanley, H.E.: Robustness of interdependent networks under targeted attack. Phys. Rev. E 83, 065101(R) (2011)Google Scholar
  45. 45.
    Zhou, D., Stanley, H.E., D’Agostino, G., Scala, A.: Assortativity decreases the robustness of interdependent networks. Phys. Rev. E 86, 066103 (2012)CrossRefADSGoogle Scholar
  46. 46.
    Baxter, G.J., Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F.: Avalanche collapse of interdependent networks. Phys. Rev. Lett. 109, 248701 (2012)CrossRefADSGoogle Scholar
  47. 47.
    Peixoto, T.P., Bornholdt, S.: Evolution of robust network topologies: emergence of central backbones. Phys. Rev. Lett. 109, 118703 (2012)CrossRefADSGoogle Scholar
  48. 48.
    Parshani, R., Buldyrev, S.V., Havlin, S.: Interdependent networks: reducing the coupling strength leads to a change from a first to second order percolation transition. Phys. Rev. Lett. 105, 048701 (2010)CrossRefADSGoogle Scholar
  49. 49.
    Son, S.-W., Bizhani, G., Christensen, C., Grassberger, P., Paczuski, M.: Percolation theory on interdependent networks based on epidemic spreading. EPL 97, 16006 (2012)CrossRefADSGoogle Scholar
  50. 50.
    Lau, H.W., Paczuski, M., Grassberger, P.: Agglomerative percolation on bipartite networks: nonuniversal behavior due to spontaneous symmetry breaking at the percolation threshold. Phys. Rev. E 86, 011118 (2012)CrossRefADSGoogle Scholar
  51. 51.
    Schneider, C.M., Araújo, N.A.M., Herrmann, H.J.: Algorithm to determine the percolation largest component in interconnected networks. Phys. Rev. E 87, 043302 (2013)CrossRefADSGoogle Scholar
  52. 52.
    Zhao, K., Bianconi, G.: Percolation on interacting, antagonistic networks. J. Stat. Mech. 2013, P05005 (2013)Google Scholar
  53. 53.
    Gómez, S., Díaz-Guilera, A., Gómez-Gardeñes, J., Pérez-Vicente, C., Moreno, Y., Arenas, A.: Diffusion dynamics on multiplex networks. Phys. Rev. Lett. 110, 028701 (2013)CrossRefADSGoogle Scholar
  54. 54.
    Gao, J., Buldyrev, S.V., Stanley, H.E., Havlin, S.: Networks formed from interdependent networks. Nat. Phys. 8, 40–48 (2012)CrossRefGoogle Scholar
  55. 55.
    Havlin, S., Kenett, D.Y., Ben-Jacob, E., Bunde, A., Hermann, H., Kurths, J., Kirkpatrick, S., Solomon, S., Portugali, J.: Challenges of network science: applications to infrastructures, climate, social systems and economics. Eur. J. Phys. Spec. Top. 214, 273–293 (2012)CrossRefGoogle Scholar
  56. 56.
    Wang, Y., Xiao, G.: Epidemics spreading in interconnected complex networks. Phys. Lett. A 376, 2689–2696 (2012)CrossRefADSzbMATHGoogle Scholar
  57. 57.
    Csermely, P.: The appearance and promotion of creativity at various levels of interdependent networks. Talent Dev. Excell. 5, 115–123 (2013)Google Scholar
  58. 58.
    Halu, A., Zhao, K., Baronchelli, A., Bianconi, G.: Connect and win: the role of social networks in political elections. EPL 102, 16002 (2013)CrossRefADSGoogle Scholar
  59. 59.
    Szolnoki, A., Szabó, G.: Cooperation enhanced by inhomogeneous activity of teaching for evolutionary prisoner’s dilemma games. EPL 77, 30004 (2007)CrossRefADSMathSciNetGoogle Scholar
  60. 60.
    Szolnoki, A., Perc, M.: Coevolution of teaching activity promotes cooperation. New J. Phys. 10, 043036 (2008)CrossRefADSGoogle Scholar
  61. 61.
    Santos, F.C., Pinheiro, F., Lenaerts, T., Pacheco, J.M.: Role of diversity in the evolution of cooperation. J. Theor. Biol. 299, 88–96 (2012)CrossRefMathSciNetGoogle Scholar
  62. 62.
    Dickman, R., Wang, J.-S., Jensen, I.: Random sequential adsorption: series and virial expansions. J. Chem. Phys. 94, 8252–8257 (1991)CrossRefADSGoogle Scholar
  63. 63.
    Wang, Z., Szolnoki, A., Perc, M.: Percolation threshold determines the optimal population density for public cooperation. Phys. Rev. E 85, 037101 (2012)CrossRefADSGoogle Scholar
  64. 64.
    Wang, Z., Szolnoki, A., Perc, M.: If players are sparse social dilemmas are too: importance of percolation for evolution of cooperation. Sci. Rep. 2, 369 (2012)ADSGoogle Scholar
  65. 65.
    Blume, L.E.: The statistical mechanics of strategic interactions. Games Econ. Behav. 5, 387–424 (1993)CrossRefMathSciNetzbMATHGoogle Scholar
  66. 66.
    Schlag, K.H.: Why imitate, and if so, how? A bounded rational approach to multi-armed bandits. J. Econ. Theory 78, 130–156 (1998)MathSciNetzbMATHGoogle Scholar
  67. 67.
    Szabó, G., Vukov, J., Szolnoki, A.: Phase diagrams for an evolutionary prisoner’s dilemma game on two-dimensional lattices. Phys. Rev. E 72, 047107 (2005)CrossRefADSGoogle Scholar
  68. 68.
    Kuperman, M.N., Risau-Gusman, S.: Relationship between clustering coefficient and the success of cooperation in networks. Phys. Rev. E 86, 016104 (2012)CrossRefADSGoogle Scholar
  69. 69.
    Szolnoki, A., Perc, M., Szabó, G.: Topology-independent impact of noise on cooperation in spatial public goods games. Phys. Rev. E 80, 056109 (2009)CrossRefADSGoogle Scholar
  70. 70.
    Wang, Z., Szolnoki, A., Perc, M.: Optimal interdependence between networks for the evolution of cooperation. Sci. Rep. 3, 2470 (2013)ADSGoogle Scholar
  71. 71.
    Jiang, L.-L., Perc, M.: Spreading of cooperative behaviour across interdependent groups. Sci. Rep. 3, 2483 (2013)ADSGoogle Scholar
  72. 72.
    Wang, Z., Szolnoki, A., Perc, M.: Self-organization towards optimally interdependent networks by means of coevolution. New J. Phys. 16, 033041 (2014)CrossRefADSGoogle Scholar
  73. 73.
    Wang, Z., Szolnoki, A., Perc, M.: Rewarding evolutionary fitness with links between populations promotes cooperation. J. Theor. Biol. 349, 50–56 (2014)CrossRefMathSciNetGoogle Scholar
  74. 74.
    Li, R.-H., Yu, J.X., Lin, J.: Evolution of cooperation in spatial traveler’s dilemma game. PLoS One 8, e58597 (2013)CrossRefADSGoogle Scholar
  75. 75.
    Poncela, J., Gómez-Gardeñes, J., Floría, L.M., Sánchez, A., Moreno, Y.: Complex cooperative networks from evolutionary preferential attachment. PLoS One 3, e2449 (2008)CrossRefADSGoogle Scholar
  76. 76.
    Poncela, J., Gómez-Gardeñes, J., Traulsen, A., Moreno, Y.: Evolutionary game dynamics in a growing structured population. New J. Phys. 11, 083031 (2009)CrossRefADSGoogle Scholar
  77. 77.
    Portillo, I.G.: Building cooperative networks. Phys. Rev. E 86, 051108 (2012)CrossRefADSGoogle Scholar
  78. 78.
    Li, G., Jin, X.-G., Song, Z.-H.: Evolutionary game on a stochastic growth network. Physica A 391, 6664–6673 (2012)CrossRefADSGoogle Scholar
  79. 79.
    Brede, M.: Short versus long term benefits and the evolution of cooperation in the prisoner’s dilemma game. PLoS One 8, e56016 (2013)CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of PhysicsHong Kong Baptist UniversityKowloon TongHong Kong
  2. 2.Center for Nonlinear Studies and the Beijing-Hong Kong-Singapore Joint Center for Nonlinear and Complex SystemsHong Kong Baptist UniversityKowloon TongHong Kong
  3. 3.Institute of Technical Physics and Materials ScienceResearch Centre for Natural Sciences, Hungarian Academy of SciencesBudapestHungary
  4. 4.Faculty of Natural Sciences and MathematicsUniversity of MariborMariborSlovenia

Personalised recommendations