A Unified Approach to Percolation Processes on Multiplex Networks

  • Gareth J. BaxterEmail author
  • Davide Cellai
  • Sergey N. Dorogovtsev
  • Alexander V. Goltsev
  • José F. F. Mendes
Part of the Understanding Complex Systems book series (UCS)


Many real complex systems cannot be represented by a single network, but due to multiple sub-systems and types of interactions, must be represented as a multiplex network. This is a set of nodes which exist in several layers, with each layer having its own kind of edges, represented by different colors. An important fundamental structural feature of networks is their resilience to damage, the percolation transition. Generalization of these concepts to multiplex networks requires careful definition of what we mean by connected clusters. We consider two different definitions. One, a rigorous generalization of the single-layer definition leads to a strong non-local rule, and results in a dramatic change in the response of the system to damage. The giant component collapses discontinuously in a hybrid transition characterized by avalanches of diverging mean size. We also consider another definition, which imposes weaker conditions on percolation and allows local calculation, and also leads to different sized giant components depending on whether we consider an activation or pruning process. This ‘weak’ process exhibits both continuous and discontinuous transitions.


Giant Component Hybrid Transition Percolation Transition Pruning Process Multiplex Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was partially supported by the FET IP Project MULTIPLEX 317532 and by the FCT projects EXPL/FIS-NAN/1275/2013 and PEst-C/CTM/LA0025/2011, and post-doctoral fellowship SFRH/BPD/74040/2010, Science Foundation Ireland, Grant No. 11/PI/1026 and the FET-Proactive project PLEXMATH (FP7-ICT-2011-8; Grant No. 317614).


  1. 1.
    Baxter, G.J., Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F.: Bootstrap percolation on complex networks. Phys. Rev. E 82, 011103 (2010)CrossRefADSGoogle Scholar
  2. 2.
    Baxter, G.J., Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F.: Heterogeneous k-core versus bootstrap percolation on complex networks. Phys. Rev. E 83(5), 051134 (2011)CrossRefADSGoogle Scholar
  3. 3.
    Baxter, G.J., Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F.: Avalanche collapse of interdependent networks. Phys. Rev. Lett. 109, 248701 (2012)CrossRefADSGoogle Scholar
  4. 4.
    Baxter, G.J., Dorogovtsev, S.N., Mendes, J.F.F., Cellai, D.: Weak percolation on multiplex networks. Phys. Rev. E 89, 042801 (2014)CrossRefADSGoogle Scholar
  5. 5.
    Baxter, G.J., Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F.: Avalanches in multiplex and interdependent networks. In: D’Agostino, G., Scala, A. (eds.) Networks of Networks: The Last Frontier of Complexity. Understanding Complex Systems, pp. 37–52. Springer International Publishing, Cham (2014)CrossRefGoogle Scholar
  6. 6.
    Boccaletti, S., Bianconi, G., Criado, R., del Genio, C.I., Gómez-Gardeñes, J., Romance, M., Sendiña-Nadal, I., Wang, Z., Zanin, M.: The structure and dynamics of multilayer networks. Phys. Rep. 544, 1–122 (2014)CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Buldyrev, S.V., Parshani, R., Paul, G., Stanley, H.E., Havlin, S.: Catastrophic casdade of failures in interdependent networks. Nature 464, 08932 (2010)CrossRefGoogle Scholar
  8. 8.
    Caccioli, F., Shrestha, M., Moore, C., Doyne Farmer, J.: Stability analysis of financial contagion due to overlapping portfolios (2012). arXiv:1210.5987Google Scholar
  9. 9.
    Chalupa, J., Leath, P.L., Reich, G.R.: Bootstrap percolation on a bethe lattice. J. Phys. C 12, L31 (1979)CrossRefADSGoogle Scholar
  10. 10.
    Cohen, R., ben Avraham, D., Havlin, S.: Percolation critical exponents in scale-free networks. Phys. Rev. E 66, 036113 (2002)Google Scholar
  11. 11.
    Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F.: k-core organisation of complex networks. Phys. Rev. Lett. 96, 040601 (2006)Google Scholar
  12. 12.
    Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F.: Critical phenomena in complex networks. Rev. Mod. Phys. 80, 1275–1335 (2008)CrossRefADSGoogle Scholar
  13. 13.
    Dueñas, L., Cragin, J.I., Goodno, B.J.: Seismic response of critical interdependent networks. Earthq. Eng. Struct. Dyn. 36, 285–306 (2007)CrossRefGoogle Scholar
  14. 14.
    Gao, J., Buldyrev, S.V., Havlin, S., Stanley, H.E.: Robustness of a network of networks. Phys. Rev. Lett. 107, 195701 (2011)CrossRefADSGoogle Scholar
  15. 15.
    Huang, X., Vodenska, I., Havlin, S., Stanley, H.E.: Cascading failures in bi-partite graphs: model for systemic risk propagation. Sci. Rep. 3, 1219 (2013)ADSGoogle Scholar
  16. 16.
    Leicht, E.A., D’Souza, R.M.: Percolation on interacting networks (2009). arXiv:0907.0894Google Scholar
  17. 17.
    Min, B., K.-I. Goh.: Multiple resource demands and viability in multiplex networks. Phys. Rev. E 89, 040802(R) (2014)Google Scholar
  18. 18.
    Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64, 026118 (2001)CrossRefADSGoogle Scholar
  19. 19.
    Pocock, M.J.O., Evans, D.M., Memmott, J.: The robustness and restoration of a network of ecological networks. Science 335, 973–976 (2012)CrossRefADSGoogle Scholar
  20. 20.
    Poljans̆ek, K., Bono, F., Gutiérrez, E.: Seismic risk assessment of interdependent critical infrastructure systems: the case of European gas and electricity networks. Earthq. Eng. Struct. Dyn. 41, 61–79 (2012)Google Scholar
  21. 21.
    Rinaldi, S.M., Peerenboom, J.P., Kelly, T.K.: Identifying, understanding, and analyzing critical infrastructure interdependencies. IEEE Control Syst. Mag. 21, 11–25 (2001)CrossRefGoogle Scholar
  22. 22.
    Son, S.-W., Bizhani, G., Christensen, C., Grassberger, P., Paczuski, M.: Percolation theory on interdependent networks based on epidemic spreading. EPL 97, 16006 (2012)CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Gareth J. Baxter
    • 1
    Email author
  • Davide Cellai
    • 2
  • Sergey N. Dorogovtsev
    • 1
    • 3
  • Alexander V. Goltsev
    • 1
    • 3
  • José F. F. Mendes
    • 1
  1. 1.Department of Physics & I3NUniversity of AveiroAveiroPortugal
  2. 2.MACSI, Department of Mathematics and StatisticsUniversity of LimerickLimerickIreland
  3. 3.A. F. Ioffe Physico-Technical InstituteSt. PetersburgRussia

Personalised recommendations