Advertisement

Interconnecting Networks: The Role of Connector Links

  • Javier M. BuldúEmail author
  • Ricardo Sevilla-Escoboza
  • Jacobo Aguirre
  • David Papo
  • Ricardo Gutiérrez
Chapter
Part of the Understanding Complex Systems book series (UCS)

Abstract

Recently, some studies have started to show how global structural properties or dynamical processes such as synchronization, robustness, cooperation, transport or epidemic spreading change dramatically when considering a network of networks, as opposed to networks in isolation. In this chapter we examine the effects that the particular way in which networks get connected exerts on each of the individual networks. We describe how choosing the adequate connector links between networks may promote or hinder different structural and dynamical properties of a particular network. We show that different connecting strategies have consequences on the distribution of network centrality, population dynamics or spreading processes. The importance of designing adequate connection strategies is illustrated with examples of social and biological systems. Finally, we discuss how this new approach can be translated to other dynamical processes, such as synchronization in an ensemble of networks.

Keywords

Spectral Property Large Eigenvalue Laplacian Matrix Connector Node Adjacency Matrice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Authors acknowledge P.L. del Barrio for fruitful conversations and the support of MINECO (FIS2011-27569, FIS2012-38949-C03-01, FIS2013-41057-P, and FIS2014-57686). R.S.E. acknowledges UdG, Culagos (México) for financial support (PIFI 522943 (2012) and Becas Movilidad 290674-CVU-386032).

References

  1. 1.
    Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)CrossRefADSMathSciNetzbMATHGoogle Scholar
  2. 2.
    Newman, M.E.J., Barabási, A.-L., Watts, D.J.: The Structure and Dynamics of Networks. Princeton University Press, Princeton/Oxford (2006)zbMATHGoogle Scholar
  3. 3.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.: Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006)CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Newman, M.E.J.: Networks: An Introduction. Oxford University Press, New York (2010)CrossRefzbMATHGoogle Scholar
  5. 5.
    Albert, R., Jeong, H., Bararabási, A.-L.: Error and attack tolerance of complex networks. Nature 406, 378 (2000)CrossRefADSGoogle Scholar
  6. 6.
    Callaway, D.S., Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Network robustness and fragility: percolation on random graphs Phys. Rev. Lett. 85, 5468 (2000)CrossRefADSGoogle Scholar
  7. 7.
    Cohen, R., Erez, K., ben Avraham, D., Havlin, S.: Resilience of the internet to random breakdowns. Phys. Rev. Lett. 85, 4626 (2000)Google Scholar
  8. 8.
    Cohen, R., Erez, K., ben Avraham, D., Havlin, S.: Breakdown of the internet under intentional attack. Phys. Rev. Lett. 86, 3682 (2001)Google Scholar
  9. 9.
    Kleinberg, J.M.: Navigation in the small world. Nature 406, 845 (2000)CrossRefADSGoogle Scholar
  10. 10.
    Motter, A.E., Zhou, C.S., Kurths, J.: Enhancing complex-network synchronization. Europhy. Lett. 69, 334 (2005)CrossRefADSGoogle Scholar
  11. 11.
    Chavez, M., Hwang, D.U., Amman, A., Hentschel, H.G.E., Boccaletti, S.: Synchronization is enhanced in weighted complex networks. Phys. Rev. Lett. 94, 218701 (2005)CrossRefADSGoogle Scholar
  12. 12.
    Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86, 3200 (2001)CrossRefADSGoogle Scholar
  13. 13.
    Pastor-Satorras, R., Vespignani, A.: Epidemic dynamics and endemic states in complex networks. Phys. Rev. E 63, 066117 (2001)CrossRefADSGoogle Scholar
  14. 14.
    Zanette, D.: Critical behavior of propagation on small-world networks. Phys. Rev. E 64, 050901 (2001)CrossRefADSGoogle Scholar
  15. 15.
    Liu, Z., Lai, Y.C., Ye, N.: Propagation and immunization of infection on general networks with both homogeneous and heterogeneous components. Phys. Rev. E 67, 031911 (2003)CrossRefADSGoogle Scholar
  16. 16.
    Solé, R.V., Valverde, S.: Information transfer and phase transitions in a model of internet traffic. Phys. A 289, 595–605 (2001)CrossRefzbMATHGoogle Scholar
  17. 17.
    Arenas, A., Díaz Guilera, A., Guimerá, R.: Communication in networks with hierarchical branching. Phys. Rev. Lett. 86, 3196–3199 (2001)CrossRefADSzbMATHGoogle Scholar
  18. 18.
    Guimerá, R., Arenas, A., Díaz Guilera, A., Giralt, F.: Dynamical properties of model communication networks. Phys. Rev. E 66, 026704 (2002)CrossRefADSGoogle Scholar
  19. 19.
    Barrat, A., Barthélemy, M., Vespignani, A.: Dynamical processes on networks. Cambridge University Press, Cambridge (2008)CrossRefzbMATHGoogle Scholar
  20. 20.
    Gross, T., Blasius, B.: Adaptive networks: a review. J. R. Soc.: Interface 5, 259–271 (2008)Google Scholar
  21. 21.
    Gao, J., Buldyrev, S., Havlin, S., Stanley, H.: Robustness of a network of networks. Phys. Rev. Lett. 107, 1–5 (2011)Google Scholar
  22. 22.
    Quill, E.: When networks network. ScienceNews, September 22nd 182, 6 (2012)Google Scholar
  23. 23.
    Danon, L., Duch, J., Arenas, A., Díaz-Guilera, A.: Community structure identification. In: Large Scale Structure and Dynamics of Complex Networks: From Information Technology to Finance and Natural Science, pp. 93–113. World Scientific, Singapore (2007)Google Scholar
  24. 24.
    Fortunato, S.: Community detection in graphs. Phys. Rep. 486, 75–174 (2010)CrossRefADSMathSciNetGoogle Scholar
  25. 25.
    Canright, G.S., Engo-Monson, K.: Spreading on networks: a topographic view. Complexus 3, 131–146 (2006)CrossRefGoogle Scholar
  26. 26.
    Aguirre, J., Papo, D., Buldú, J.M.: Successful strategies for competing networks. Nat. Phys. 9, 230 (2013)CrossRefGoogle Scholar
  27. 27.
    Marcus, R.A.: Brief comments on perturbation theory of a nonsymmetric matrix: the GF matrix. J. Phys. Chem. A 105, 2612–2616 (2001)CrossRefGoogle Scholar
  28. 28.
    Restrepo, J.G., Ott, E., Hunt, B.R.: Characterizing the dynamical importance of network nodes and links. Phys. Rev. Lett. 97, 094102 (2006)CrossRefADSGoogle Scholar
  29. 29.
    Chauhan, S., Girvan, M., Ott, E.: Spectral properties of networks with community structure. Phys. Rev. E 80, 056114 (2009)CrossRefADSGoogle Scholar
  30. 30.
    Aguirre, J., Buldú, J.M., Manrubia, S.C.: Evolutionary dynamics on networks of selectively neutral genotypes: effects of topology and sequence stability. Phys. Rev. E 80, 066112 (2009)CrossRefADSGoogle Scholar
  31. 31.
    van Nimwegen, E., Crutchfield, J.P., Huynen, M.: Neutral evolution of mutational robustness. Proc. Natl. Acad. Sci. USA 96, 9716–9720 (1999)CrossRefADSGoogle Scholar
  32. 32.
    Capitán, J.A., Aguirre, J., Manrubia, S.: Dynamical community structure of populations evolving on genotype networks. Chaos, Solitons & Fractals 72, 99–106 (2014)CrossRefADSMathSciNetGoogle Scholar
  33. 33.
    Aguirre, J., Buldú, J.M., Stich, M., Manrubia, S.C.: Topological structure of the space of phenotypes: the case of RNA neutral networks. PLoS ONE 6(10), e26324 (2011)CrossRefADSGoogle Scholar
  34. 34.
    Barrat, A., Barthélemy, M., Vespignani, A.: Dynamical processes in complex networks. Cambridge University Press, New York (2008)CrossRefzbMATHGoogle Scholar
  35. 35.
    Daley, D.J., Gani, J.: Epidemic Modeling: An Introduction. Cambridge University Press, New York (2005)zbMATHGoogle Scholar
  36. 36.
    Brauer, F., Castillo-Chávez, C.: Mathematical Models in Population Biology and Epidemiology. Springer, New York (2001)CrossRefzbMATHGoogle Scholar
  37. 37.
    Bearman, P., Moody, J., Stovel, K.: Chains of affection: the structure of adolescent romantic and sexual networks. Am. J. Sociol. 110, 44–99 (2004)CrossRefGoogle Scholar
  38. 38.
    Radicchi, F., Arenas, A.: Abrupt transition in the structural formation of interconnected networks. Nat. Phys. 9, 717–720 (2013)CrossRefGoogle Scholar
  39. 39.
    Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex networks. Phys. Rep. 469, 93–153 (2008)CrossRefADSMathSciNetGoogle Scholar
  40. 40.
    Aguirre, J., Sevilla-Escoboza, R., Gutiérrez, R., Papo, D., Buldú, J.M.: Synchronization of interconnected networks: the role of connector nodes. Phys. Rev. Lett. 112, 248701 (2014)CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Javier M. Buldú
    • 1
    • 2
    Email author
  • Ricardo Sevilla-Escoboza
    • 3
  • Jacobo Aguirre
    • 4
  • David Papo
    • 1
  • Ricardo Gutiérrez
    • 5
  1. 1.Laboratory of Biological NetworksCenter for Biomedical Technology, UPMMadridSpain
  2. 2.Complex Systems GroupUniversidad Rey Juan CarlosMóstoles, MadridSpain
  3. 3.Centro Universitario de los LagosUniversidad de Guadalajara, Enrique Díaz de LeonLagos de MorenoMéxico
  4. 4.Centro Nacional de Biotecnología (CSIC)MadridSpain
  5. 5.Department of Chemical PhysicsThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations