An Ensemble Perspective on Multi-layer Networks

  • Nicolas WiderEmail author
  • Antonios Garas
  • Ingo Scholtes
  • Frank Schweitzer
Part of the Understanding Complex Systems book series (UCS)


We study properties of multi-layered, interconnected networks from an ensemble perspective, i.e. we analyze ensembles of multi-layer networks that share similar aggregate characteristics. Using a diffusive process that evolves on a multi-layer network, we analyze how the speed of diffusion depends on the aggregate characteristics of both intra- and inter-layer connectivity. Through a block-matrix model representing the distinct layers, we construct transition matrices of random walkers on multi-layer networks, and estimate expected properties of multi-layer networks using a mean-field approach. In addition, we quantify and explore conditions on the link topology that allow to estimate the ensemble average by only considering aggregate statistics of the layers. Our approach can be used when only partial information is available, like it is usually the case for real-world multi-layer complex systems.


Multi-layer Network Ensemble Perspective Complex Multi-layered System Construct Transition Matrices Random Walk Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



N.W., A.G. and F.S. acknowledge support from the EU-FET project MULTIPLEX 317532.


  1. 1.
    Parshani, R., Buldyrev, S.V., Havlin, S.: Critical effect of dependency groups on the function of networks. Proc. Natl. Acad. Sci. 108, 1007–1010 (2011)CrossRefADSGoogle Scholar
  2. 2.
    Gao, J., Buldyrev, S.V., Stanley, H.E., Havlin, S.: Networks formed from interdependent networks. Nat. Phys. 8, 40–48 (2012)CrossRefGoogle Scholar
  3. 3.
    Gómez, S., Díaz-Guilera, A., Gómez-Gardeñes, J., Pérez-Vicente, C.J.: Moreno, Y., Arenas, A.: Diffusion dynamics on multiplex networks. Phys. Rev. Lett. 110, 028701 (2013)Google Scholar
  4. 4.
    Garas, A.: Reaction-diffusion processes on interconnected scale-free networks (2014). arXiv:1407.6621Google Scholar
  5. 5.
    Boccaletti, S., Bianconi, G., Criado, R., del Genio, C.I., Gómez-Gardeñes, J., Romance, M., Sendiña-Nadal, I., Wang, Z., Zanin, M.: The structure and dynamics of multilayer networks. Phys. Rep. 544, 1–122 (2014)CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Blanchard, P., Volchenkov, D.: Random Walks and Diffusions on Graphs and Databases. Springer, Berlin/Heidelberg (2011). ISBN:978-3-642-19592-1CrossRefzbMATHGoogle Scholar
  7. 7.
    Rosenthal, J.S.: Convergence rates for Markov chains. SIAM Rev. 37, 387–405 (1995)CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Chung, F.: Laplacians and the Cheeger inequality for directed graphs. Ann. Comb. 9, 1–19 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Lovász, L.: Random walks on graphs: a survey. Comb., Paul Erdos Eighty 2, 1–46 (1993)Google Scholar
  10. 10.
    De Domenico, M., Sole, A., Gómez, S., Arenas, A.: Navigability of interconnected networks under random failures. Proc. Natl. Acad. Sci. 111, 8351–8356 (2014)CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Solé-Ribalta, A., De Domenico, M., Kouvaris, N.E., Díaz-Guilera, A., Gómez, S., Arenas, A.: Spectral properties of the Laplacian of multiplex networks. Phys. Rev. E 88, 032807 (2013)CrossRefADSGoogle Scholar
  12. 12.
    Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y., Porter, M.A.: Multilayer networks. J. Complex Netw. 2, 203–271 (2014)CrossRefGoogle Scholar
  13. 13.
    De Domenico, M., Solé-Ribalta, A., Cozzo, E., Kivelä, M., Moreno, Y., Porter, M.A., Gómez, S., Arenas, A.: Mathematical formulation of multilayer networks. Phys. Rev. X 3, 041022 (2013)Google Scholar
  14. 14.
    Fiedler, M.: A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory. Czechoslov. Math. J. 25(4), 619–633 (1975)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Gfeller, D., De Los Rios, P.: Spectral coarse graining of complex networks. Phys. Rev. Lett. 99, 038701 (2007)CrossRefADSGoogle Scholar
  16. 16.
    Martín-Hernández, J., Wang, H., Van Mieghem, P., D’Agostino, G.: Algebraic connectivity of interdependent networks. Phys. A: Stat. Mech. Appl. 404, 92–105 (2014)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Grabow, C., Grosskinsky, S., Timme, M.: Small-world network spectra in mean-field theory. Phys. Rev. Lett. 108: 218701 (2012)CrossRefADSGoogle Scholar
  18. 18.
    Radicchi, F., Arenas, A.: Abrupt transition in the structural formation of interconnected networks. Nat. Phys. 9, 717–720 (2013)CrossRefGoogle Scholar
  19. 19.
    Fiedler, M.: Algebraic connectivity of graphs. Czechoslov. Math. J. 23, 298–305 (1973)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Nicolas Wider
    • 1
    Email author
  • Antonios Garas
    • 1
  • Ingo Scholtes
    • 1
  • Frank Schweitzer
    • 1
  1. 1.Chair of Systems DesignETH ZürichZürichSwitzerland

Personalised recommendations