Advertisement

Continuous Acquisition and Life-Cycle Support (CALS) Simulation Models on the Basis of the ERP and CAD Technologies Integration

  • Victor M. Kureichik
  • Vladimir V. Kureichik
  • Victor V. Taratukhin
  • Yury A. KravchenkoEmail author
  • Anna I. Khlebnikova
Chapter
Part of the Progress in IS book series (PROIS)

Abstract

In present article an intellectual data analysis and simulation modeling methods were used for management of information flows of manufacturing enterprise on the basis of ERP (Enterprise Resource Planning) and CAD (Computer-aided design) systems. СALS-simulation model on the basis of Petri nets as an integration tool of the industrial automated systems in a uniform multifunctional business processes control system is designed. Data mining methods development for effective support of decision-making of steady meta-structures of logical data patterns identification are also investigated. The conceptual scheme of evolutionary modeling methods integration for intellectual data analysis of business processes management is developed.

Keywords

ERP CALS CAD Data mining Petri nets Decision support system (DSS) 

References

  1. 1.
    Becker, Y., Vilkov, L., Taratukhin, V., Kugeler, M., & Rozemann, M. (2007). Management of processes (p. 112). Moscow: Eksmo.Google Scholar
  2. 2.
    Andreychikov, A., & Andreychikova, O. (2004). Intellectual information system (p. 312). Moscow: Finance and Statistics.Google Scholar
  3. 3.
    Norenkov, I. P., & Kuzmik, P. K. (2002). Information support of the knowledge-intensive products (p. 83). Moscow: CALS Technologies, MGTU of AD Bauman.Google Scholar
  4. 4.
    Kureichik, V. V., Kureichik, V. M., Kovalev, S. M., & Sokolov, S. V. (2011). Optical fuzzy logic systems in problems of adaptive simulation of weakly formalized processes. Journal of Computer and Systems Sciences International, 50(3), 462–471.CrossRefGoogle Scholar
  5. 5.
    Fu, Y. (2001). Distributed data mining: An overview. In IEEE TCDP newsletter.Google Scholar
  6. 6.
    Dimou, Ch., Symeonidis Andreas, L., & Mitkas Pericles, A. (2007). Evaluating knowledge intensive multi-agent systems. In Second international workshop, AIS-ADM, proceedings (pp. 74–87). Berlin: Springer.Google Scholar
  7. 7.
    Lotfi, A., & Zadeh. (2002). In quest of performance metrics for intelligent systems a challenge that cannot be met with existing methods. In Proceedings of the third international workshop on performance metrics for intelligent systems (PERMIS).Google Scholar
  8. 8.
    Kravchenko, Y. A., & Kureichik, V. V. (2013). Bioinspired algorithm applied to solve the travelling salesman problem. World Applied Sciences Journal, 22(12), 1789–1797.Google Scholar
  9. 9.
    Colodro, F., & Torralba, A. (1996). Cellular neuro-fuzzy networks (CNFNs), a new class of cellular networks. In Proceedings of 5th IEEE international conference fuzzy systems (Vol. 1, pp. 517–521) September 8–11.Google Scholar
  10. 10.
    Symeonidis, A. L., & Mitkas, P. A. (2005). Agent intelligence through data mining. New York: Springer.Google Scholar
  11. 11.
    Kitchenham, B. A. (1996). Evaluating software engineering methods. Part 2: Selecting an appropriate evaluation method technical criteria. SIGSOFT Software Engineering Notes, 21(2), 11–15.CrossRefGoogle Scholar
  12. 12.
    Lin, C. T., Chang, C. L., & Cheng, W. C. (2004). A recurrent fuzzy neural network system with automatic structure and template learning. IEEE Transactions on Circuits and Systems I: Regular Papers, 51(5), 1024–1035.CrossRefGoogle Scholar
  13. 13.
    Shih, T. K. (2000). Evolution of mobile agents. In Proceedings of the first international workshop on performance metrics for intelligent systems (PERMIS).Google Scholar
  14. 14.
    Zaporozhets, D. Y., Zaruba, D. V., & Kureichik, V. V. (2013). Hybrid bionic algorithms for solving problems of parametric optimization. World Applied Sciences Journal, 23(8), 1032–1036.Google Scholar
  15. 15.
    Kureichik, V. M., Lebedev, B. K., & Lebedev, V. B. (2013). VLSI floorplanning based on the integration of adaptive search models. Journal of Computer and Systems Sciences International, 52(1), 80–96.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Victor M. Kureichik
    • 1
  • Vladimir V. Kureichik
    • 1
  • Victor V. Taratukhin
    • 2
  • Yury A. Kravchenko
    • 1
    Email author
  • Anna I. Khlebnikova
    • 1
  1. 1.Southern Federal UniversityRostov-on-DonRussia
  2. 2.University of Muenster - ERCISMünsterGermany

Personalised recommendations