Skip to main content

Effect of Milk Fat Globule Size on Physical Properties of Milk

  • Chapter
  • First Online:
Effect of Milk Fat Globule Size on the Physical Functionality of Dairy Products

Part of the book series: SpringerBriefs in Food, Health, and Nutrition ((BRIEFSFOOD))

Abstract

Within the wide size range of MFG, the smallest globules are approximately 100-fold smaller in diameter compared to the largest ones. For the same bulk volume of fat, milk, with smaller MFG will have a higher total number of MFG. Within these milks, the smaller MFG will tend to have greater surface curvature, and a larger surface area/volume ratio, compared to larger MFG. These differences can give rise to marked differences in the physical properties of MFG size-differentiated milk and milk fat as summarised in Fig. 6.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anton N, Benoit JP, Saulnier P. Design and production of nanoparticles formulated from nano-emulsion templates - a review. J Control Release. 2008;128(3):185–99. doi:10.1016/j.jconrel.2008.02.007.

    Article  CAS  Google Scholar 

  • Ashworth US. Turbidity as a means for determining the efficiency of homogenization. J Dairy Sci. 1951;34(4):317–20.

    Article  CAS  Google Scholar 

  • Banach JK, Å»ywica R, KieÅ‚czewska K. Effect of homogenization on milk conductance properties. Pol J Food and Nutr Sci. 2008;58(1):107–11.

    Google Scholar 

  • Bugeat S, Briard-Bion V, Perez J, Pradel P, Martin B, Lesieur S, Bourgaux C, Ollivon M, Lopez C. Enrichment in unsaturated fatty acids and emulsion droplet size affect the crystallization behaviour of milk triacylglycerols upon storage at 4 degrees C. Food Res Int. 2011;44(5):1314–30. doi:10.1016/j.foodres.2011.01.003.

    Article  CAS  Google Scholar 

  • Bunjes H, Koch MHJ, Westesen K. Effect of particle size on colloidal solid triglycerides. Langmuir. 2000;16(12):5234–41.

    Article  Google Scholar 

  • Chapman D. The polymorphism of glycerides. Chem Rev. 1962;62:433–56.

    Article  CAS  Google Scholar 

  • Dickinson E, Mcclements DJ, Povey MJW. Ultrasonic investigation of the particle-size dependence of crystallization in N-hexadecane-in-water emulsions. J Colloid Interface Sci. 1991;142(1):103–10.

    Article  CAS  Google Scholar 

  • Fox PF, McSweeney PL. Dairy chemistry and biochemistry. London: Blackie Academic & Professional; 1998.

    Google Scholar 

  • Fredrick E, Van de Walle D, Walstra P, Zijtveld JH, Fischer S, Van der Meeren P, Dewettinck K. Isothermal crystallization behaviour of milk fat in bulk and emulsified state. Int Dairy J. 2011;21(9):685–95. doi:10.1016/j.idairyj.2010.11.007.

    Article  CAS  Google Scholar 

  • Goff HD. Instability and partial coalescence in whippable dairy emulsions. J Dairy Sci. 1997;80(10):2620–30.

    Article  CAS  Google Scholar 

  • Goulden JDS. Some factors affecting turbimetric methods for the determination of fat in milk. J Dairy Res. 1958;25(2):228–35.

    Article  CAS  Google Scholar 

  • Higami M, Ueno S, Segawa T, Iwanami K, Sato K. Simultaneous synchrotron radiation X-ray diffraction - DSC analysis of melting and crystallization behavior of trilauroylglycerol in nanoparticles of oil-in-water emulsion. J Am Oil Chem Soc. 2003;80(8):731–9.

    Article  CAS  Google Scholar 

  • Huppertz T, Kelly AL. Physical chemistry of milk fat globules. In: Fox PF, McSweeney PLH, editors. Advanced dairy chemistry volume 2: lipids, vol. 2. 3rd ed. New York: Springer; 2006.

    Google Scholar 

  • Kessler HG. Emulsifying _ Homgenizing. In: Food engineering and dairy technology. Germany: Verlag A. Kessler; 1981. p. 119–38.

    Google Scholar 

  • Kietczewska K, Kruk A, Czerniewicz M, Warminska M, Haponiuk E. The effect of high-pressure homogenization on changes in milk colloidal and emulsifying systems. Pol J Food Nutr Sci. 2003;12/53(1):43–6.

    Google Scholar 

  • Long Z, Zhao MM, Zhao QZ, Yang B, Liu LY. Effect of homogenisation and storage time on surface and rheology properties of whipping cream. Food Chem. 2012;131(3):748–53.

    Article  CAS  Google Scholar 

  • Lopez C, Bourgaux C, Lesieur P, Bernadou S, Keller G, Ollivon M. Thermal and structural behavior of milk fat - 3. Influence of cooling rate and droplet size on cream crystallization. J Colloid Interface Sci. 2002;254(1):64–78. doi:10.1006/jcis.2002.8548.

    CAS  Google Scholar 

  • Lopez C, Bourgaux C, Lesieur P, Ollivon M. Coupling of time-resolved synchrotron X-ray diffraction and DSC to elucidate the crystallisation properties and polymorphism of triglycerides in milk fat globules. Lait. 2007;87(4–5):459–80. doi:10.1051/Lait:2007018.

    Article  CAS  Google Scholar 

  • Mabrook MF, Petty MC. Effect of composition on the electrical conductance of milk. J Food Eng. 2003;60(3):321–5. doi:10.1016/S0260-8774(03)00054-2.

    Article  Google Scholar 

  • Mason TG, Wilking JN, Meleson K, Chang CB, Graves SM. Nanoemulsions: formation, structure, and physical properties. J Phys Condens Matter. 2006;18(41):R635–66. doi:10.1088/0953-8984/18/41/R01.

    Article  CAS  Google Scholar 

  • McClements DJ. Edible nanoemulsions: fabrication, properties, and functional performance. Soft Matter. 2011;7(6):2297–316. doi:10.1039/c0sm00549e.

    Article  CAS  Google Scholar 

  • McClements DJ, Rao J. Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit Rev Food Sci Nutr. 2011;51(4):285–330. doi:10.1080/10408398.2011.559558.

    Article  CAS  Google Scholar 

  • McCrae CH, Lepoetre A. Characterization of dairy emulsions by forward lobe laser light scattering - application to milk and cream. Int Dairy J. 1996;6(3):247–56. doi:10.1016/0958-6946(95)00008-9.

    Article  Google Scholar 

  • Michalski MC, Briard V, Michel F. Optical parameters of milk fat globules for laser light scattering measurements. Lait. 2001;81(6):787–96.

    Article  CAS  Google Scholar 

  • Michalski MC, Michel F, Geneste C. Appearance of submicronic particles in the milk fat globule size distribution upon mechanical treatments. Lait. 2002;82(2):193–208. doi:10.1051/Lait:2002004.

    Article  CAS  Google Scholar 

  • Michalski MC, Ollivon M, Briard V, Leconte N, Lopez C. Native fat globules of different sizes selected from raw milk: thermal and structural behavior. Chem Phys Lipids. 2004;132(2):247–61. doi:10.1016/j.chemphyslip.2004.08.007.

    Article  CAS  Google Scholar 

  • Pal R. Effect of droplet size on the rheology of emulsions. AIChE J. 1996;42(11):3181–90.

    Article  CAS  Google Scholar 

  • Precht D. Fat crystal structure in cream and butter. In: Garti N, Sato K, editors. Crystallization and polymorphism of fats and fatty acids. New York: Marcel Dekker; 1988. p. 305–61.

    Google Scholar 

  • Tadros T, Izquierdo R, Esquena J, Solans C. Formation and stability of nano-emulsions. Adv Colloid Interface Sci. 2004;108:303–18. doi:10.1016/j.cis.2003.10.023.

    Article  Google Scholar 

  • Truong T, Bansal N, Bhandari B. Effect of emulsion droplet size on foaming properties of milk fat emulsions. Food Bioprocess Technol. 2014a;7(12):3416–28. doi:10.1007/s11947-014-1352-4.

    Article  CAS  Google Scholar 

  • Truong T, Bansal N, Sharma R, Palmer M, Bhandari B. Effects of emulsion droplet sizes on the crystallisation of milk fat. Food Chem. 2014b;145:725–35. doi:10.1016/j.foodchem.2013.08.072.

    Article  CAS  Google Scholar 

  • Truong T, Morgan GP, Bansal N, Palmer M, Bhandari B. Crystal structures and morphologies of fractionated milk fat in nanoemulsions. Food Chem. 2015;171:157–67. doi:10.1016/j.foodchem.2014.08.113.

    Article  CAS  Google Scholar 

  • Walstra P. On the crystallization habit in fat globules. Neth Milk Dairy J. 1967;21(3/4):166–91.

    CAS  Google Scholar 

  • Walstra P. Physical chemistry of milk fat globules. In: Fox PF, editor. Advanced dairy chemistry vol. 2: lipids. London: Chapman & Hall; 1995. p. 131–78.

    Google Scholar 

  • Walstra P, Geurts TJ, Noomen A, Jellama A, Van Boekel MAJS. Dairy technology: principles of milk properties and processes. New York: Marcel Dekker, Inc.; 1999.

    Google Scholar 

  • Walstra P, Wouters JTM, Geurts TJ. Dairy science and technology. 2nd ed. Boca Raton: CRC; 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Truong, T., Palmer, M., Bansal, N., Bhandari, B. (2016). Effect of Milk Fat Globule Size on Physical Properties of Milk. In: Effect of Milk Fat Globule Size on the Physical Functionality of Dairy Products. SpringerBriefs in Food, Health, and Nutrition. Springer, Cham. https://doi.org/10.1007/978-3-319-23877-7_6

Download citation

Publish with us

Policies and ethics