Advertisement

Virtual Planning of Needle Guidance for a Parallel Robot Used in Brachytherapy

  • B. Gherman
  • T. Girbacia
  • D. Cocorean
  • C. Vaida
  • S. Butnariu
  • N. Plitea
  • D. Talaba
  • D. Pisla
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 38)

Abstract

Brachytherapy (BT) is an innovative cancer treatment option that allows the delivery of high doses of radiation to specific areas of the body. BT has an important advantage: it doesn’t irradiate unnecessarily healthy tissue, but focalizes mainly on the destruction of tumorous cells. The paper presents an innovative parallel robot designed for BT and a needle trajectory planning software. The algorithm designed for virtual planning of robotic needle insertion allows automatic or manual definition of the needles trajectory. A virtual reality environment has been modelled and simulations using a real needle trajectory have been conducted.

Keywords

Parallel robot Virtual reality Brachytherapy Trajectory planning 

Notes

Acknowledgments

This paper was supported by the Post-Doctoral Programme POSDRU/159/1.5/S/137516, project co-funded from European Social Fund through the Human Resources Sectorial Operational Program 2007-2013, by the project no. 173/2012, code PN-II-PT-PCCA-2011-3.2-0414, entitled “Robotic assisted brachytherapy, an innovative approach of inoperable cancers—CHANCE” financed by UEFISCDI, and by the Scopes International Grant IZ74Z0_137361/1 entitled “Creative Alliance in Research and Education focused on Medical and Service Robotics CARE-Robotics”.

References

  1. 1.
    Bassan H et al (2007) A novel manipulator for 3D ultrasound guided percutaneous needle insertion. In: Robotics and automation conference, pp 617–622Google Scholar
  2. 2.
    Baumann M et al (2011) Prosper: image and robot-guided prostate brachytherapy. Aquat Bot 32(2):63–65Google Scholar
  3. 3.
    Bernardes MC, Adorno BV, Poignet P, Borges GA (2013) Robot-assisted automatic insertion of steerable needles with closed-loop imaging feedback and intraoperative trajectory replanning. Mechatronics 23:630–645CrossRefGoogle Scholar
  4. 4.
    Elgezua I, Kobayashi Y, Makatsu G, Fujie MG (2013) Survey on current state-of-the-art in needle insertion robots: open challenges for application in real surgery. Proc CIRP 5:94–99Google Scholar
  5. 5.
    Fichtinger G et al (2006) Robotically assisted prostate brachytherapy with transrectal ultrasound guidance. Phantom Exp Brachytherapy 5(1):14–26CrossRefGoogle Scholar
  6. 6.
    Gerbaulet A, Pötter R, Mazeron J-J, Meertens H, Limbergen EV (2002) The GEC ESTRO handbook of brachytherapy. Eur Soc Therap Radiol Oncol. ISBN 978-90-804532-6-5Google Scholar
  7. 7.
    Goksel O, Sapchuk K, Salcudean SE (2011) Haptic simulator for prostate brachytherapy with simulated needle and probe interaction. Proc IEEE Conf Trans Haptics 4(3):188–198CrossRefGoogle Scholar
  8. 8.
    Hao S, Iordachita II, Xiaoan Y, Cole GA, Fischer GS (2011) Reconfigurable MRI-guided robotic surgical manipulator: prostate brachytherapy and neurosurgery applications. Int Conf Med. Biol. Soc. pp 2111–2114Google Scholar
  9. 9.
    Hing JT, Brooks AD, Desai JP (2006) Reality-based needle insertion simulation for haptic feedback in prostate brachytherapy. Proc Int Conf Robot. Autom. 619–624Google Scholar
  10. 10.
    Jiang Y, Sankereacha R, Pignol J (2007) Software tool for breast cancer brachytherapy planning using VTK. In: Proceedings of 6th IEEE international conference on cognitive informatics, pp 381–384Google Scholar
  11. 11.
    Mateescu D (2010) Oncology patient guide-published in Romanian. Bennet Publishing House, Bucuresti. ISBN 978-973-87129-7-3Google Scholar
  12. 12.
    Pisla D et al (2014) Innovative approaches regarding robots for brachytherapy. New Trends Med Serv Robot Mech Mach Sci 20:63–78CrossRefGoogle Scholar
  13. 13.
    Plitea N et al (2013) Parallel robot for brachytherapy with two kinematic guiding chains of the platform (the needle) type CYL-U. Patent pending, A/10006/2013Google Scholar
  14. 14.
    Plitea N et al (2014) Structural analysis and synthesis of parallel robots for brachytherapy. New Trends Med Serv Robot 16:191–204. http://link.springer.com/chapter/10.1007%2F978-3-319-01592-7_17
  15. 15.
    Podder T, Buzurovic I, Huang K, Yu Y (2010) MIRAB: an image-guided multichannel robot for prostate brachytherapy. Int J Radiat Oncol Biol Phys 78(3):S810CrossRefGoogle Scholar
  16. 16.
    Polo A, Salembier C, Venselaar J, Hoskin P (2010) Review of intraoperative imaging and planning techniques in permanent seed prostate brachytherapy. Radiother Oncol 94:12–23CrossRefGoogle Scholar
  17. 17.
    Salcudean SE, Prananta TD, Morris WJ, Spadinger I (2008) A robotic needle guide for prostate brachytherapy. Robot Autom 2975–2981Google Scholar
  18. 18.
    Schmidt-Ullrich PN, Todor DA, Cuttino LW, Arthur DW (2004) Virtual planning of multicatheter brachytherapy implants for accelerated partial breast irradiation. In: Proceedings of 26th international conference of engineering in medicine and biology society, vol 2, pp 3124–3127Google Scholar
  19. 19.
    Siemens NX, RecurDYN solver (2014). http://www.plm.automation.siemens.com/en_us/
  20. 20.
    Song DY et al (2011) Robotic needle guide for prostate brachytherapy. Clin Test Feasibility Perform Brachytherapy 10:57–63Google Scholar
  21. 21.
    Sparchez Z, Radu P, Zaharia T, Kacso G, Grigorescu I, Badea R (2010) Contrast enhanced ultrasound guidance: a new tool to improve accuracy in percutaneous biopsies. Med Ultrason 12(2):133–141Google Scholar
  22. 22.
    Strassmann G et al (2011) Advantage of robotic needle placement on a prostate model in HDR brachytherapy. Strahlenther Onkol 187(6):367–372CrossRefGoogle Scholar
  23. 23.
    Trejos AL et al (2008) MIRA V: an integrated system for minimally invasive robot-assisted lung brachytherapy, In: International conferecne on robotics and automation, pp 2982–2987Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • B. Gherman
    • 1
  • T. Girbacia
    • 2
  • D. Cocorean
    • 1
  • C. Vaida
    • 1
  • S. Butnariu
    • 2
  • N. Plitea
    • 1
  • D. Talaba
    • 2
  • D. Pisla
    • 1
  1. 1.Technical University of Cluj-NapocaCluj-NapocaRomania
  2. 2.Transilvania University of BrasovBrasovRomania

Personalised recommendations