Towards a Natural Interface for the Control of a Whole Arm Prosthesis

  • G. Gini
  • P. Belluco
  • F. Mutti
  • D. Rivela
  • A. Scannella
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 38)

Abstract

In the present study we illustrate a new concept for a user interface to control whole arm prosthesis. We extend the myo-electric control, taking into account the intended movement of the shoulder and integrating vision analysis to give a “visual control” to the user. While the control of the shoulder is partially obtained from pattern recognition of sEMG signals, the control of the elbow and wrist joints is only derived using the trajectory computed from the initial to the target position. We show results in simulation and discuss about future steps in developing the prosthesis.

Keywords

Prosthesis control sEMG signals Classifiers Kinect User interface 

References

  1. 1.
    Altman NS (1992) An introduction to kernel and nearest-neighbor nonparametric regression. Am Stat 46(3):175–185MathSciNetGoogle Scholar
  2. 2.
    Barbero M, Merletti R, Rainoldi A (2012) Atlas of muscle innervation zones. Springer, Milan, Italy, pp 103–120CrossRefGoogle Scholar
  3. 3.
    Bentley JL (1975) Multidimensional binary search trees used for associative searching. Commun ACM 18(9):509MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Casolo F (2010) Elbow prosthesis for partial or total limb replacements. In: Casolo F (ed) Motion Control, Chapter 16. InTech (2010)Google Scholar
  5. 5.
    Corbett EA, Perreault EJ, Kuiken TA (2011) Comparison of electromyography and force as interfaces for prosthetic. J Rehabil Res Dev 48:629–642CrossRefGoogle Scholar
  6. 6.
    Englehart K, Hudgins B (2003) A robust, real–time control scheme for multifunction myoelectric control. IEEE Trans Biomed Eng 50(7):848–854CrossRefGoogle Scholar
  7. 7.
    Englehart KB, Hudgins B, Parker PA (2001) A wavelet-based continuous classification scheme for multifunction myoelectric control. IEEE Trans Biomed Eng 48(3):302–310Google Scholar
  8. 8.
    Gini G, Arvetti M, Somlai I, Folgheraiter M (2012) Acquisition and analysis of EMG signals to recognize multiple hand movements for prosthetic applications. Appl Bion Biomech 9:145–155CrossRefGoogle Scholar
  9. 9.
    Gini G, Cavazzana L, Mutti F, Belluco P, Mauri A (2014) New results on classifying EMG signals for interfacing patients and mechanical devices. In: Rodic A, Pisla D, Bleuler H (eds) New trends in medical and service robots. Springer, vol 20 Mechanisms and Machines Sciences series (2014)Google Scholar
  10. 10.
    Han J, Kamber M, Pei J (2005) Data mining: concepts and techniques, Second Edition. Morgan Kaufmann, San FranciscoGoogle Scholar
  11. 11.
    Han J, Shao L, Xu D, Shotton J (2013) Enhanced computer vision with microsoft kinect sensor: a review. IEEE Trans Cybernetics 43(5):1318–1334CrossRefGoogle Scholar
  12. 12.
    Hargrove L, Losier Y, Lock BA, Englehart K, Hudgin B (2007) A real-time pattern recognition based myoelectric control usability study implemented in a virtual environment. In: Proceedings 29th annual international conference on IEEE EMBS. Lyon, France, pp 4842–4845 (2007)Google Scholar
  13. 13.
    Hudgins B, Parker P, Scott R (1993) A new strategy for multifunction myoelectric control. IEEE Trans Biomed Eng 40(1):82–94CrossRefGoogle Scholar
  14. 14.
    Jain AJ, Duin RPW, Mao J (2000) Statistical pattern recognition: a review. IEEE Trans PAMI 22(1):4–37CrossRefGoogle Scholar
  15. 15.
    Kuiken A, Li G, Lock BA, Lipschutz RD, Miller LA, Stubblefield KA, Englehart KB (2009) Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. JAMA 301(6):619–628CrossRefGoogle Scholar
  16. 16.
    Lai JCK, Schoen MP, Perez Gracia A, Naidu DS, Leung SW (2007) Prosthetic devices: challenges and implications of robotic implants and biological interfaces. In: Proceedings of IMechE, vol 221, pp 173–183 (2007)Google Scholar
  17. 17.
    Lisi G, Cattaneo D, Belluco P, Gini G (2011) From the classification of EMG signals to the development of a new lower arm prosthesis. In: Proceedings of IFAC 18 world congress. Milan, pp. 6493–6498 (2011)Google Scholar
  18. 18.
    Miguelez JM, Miguelez, MD, Alley RD Amputations about the shoulder: prosthetic management, Chapter 21. American Academy of Orthopaedic Surgeons (online)Google Scholar
  19. 19.
    Parker P, Englehart K, Hudgins B (2006) Myoelectric signal processing for control of powered limb prostheses. J Electromyogr Kinesiol 16(6):541–548CrossRefGoogle Scholar
  20. 20.
    Phinyomark A, Quaine F, Charbonnier S, Serviere C, Tarpin-Bernard F, Laurillau Y (2013) EMG feature evaluation for improving myoelectric pattern recognition robustness. Expert Syst Appl 40(12):4832–4840CrossRefGoogle Scholar
  21. 21.
    Richtsfeld M, Vincze M (2008) Grasping of unknown objects from a table top. workshop on vision in action: efficient strategies for cognitive agents in complex environments. Marseille, FranceGoogle Scholar
  22. 22.
    Rivela D, Scannella A (2013) Classificazione del segnale sEMG tramite pattern recognition per il controllo del giunto della spalla di una protesi attiva di arto superiore, Master Thesis, Politecnico di MilanoGoogle Scholar
  23. 23.
    Rusu RB, Cousins S (2011) 3D is here: point cloud library (PCL). In: Proceedings of IEEE ICRAGoogle Scholar
  24. 24.
    Saxena A, Driemeyer J, Ng AY (2008) Robotic grasping of novel objects using vision. Int J Robot Res 27(2):157–173CrossRefGoogle Scholar
  25. 25.
    Shenoy PK, Miller J, Crawford B, Rao RPN (2008) Electromyographic control. IEEE Trans BME 55(3):1128–1135Google Scholar
  26. 26.
    Smith LH, Hargrove LJ, Lock BA, Kuiken TA (2011) Determining the optimal window length for pattern recognition-based myoelectric control: balancing the competing effects of classification error and controller delay. IEEE Trans Neural Syst Rehabil Eng 19(2):186–192CrossRefGoogle Scholar
  27. 27.
    Yang MY, Forstner W (2010) Plane detection in point cloud data. University of BonnGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • G. Gini
    • 1
  • P. Belluco
    • 2
  • F. Mutti
    • 1
  • D. Rivela
    • 1
  • A. Scannella
    • 1
  1. 1.DEIBPolitecnico di MilanoMilanItaly
  2. 2.BIONIXMilanItaly

Personalised recommendations