Give Children Toys Robots to Educate and/or NeuroReeducate: The Example of PEKOPPA

  • I. Giannopulu
  • T. Watanabe
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 38)


Using an InterActor toy robot named PEKOPPA in a “speaker-listener” situation, we have compared the verbal and the emotional expressions of neurotypical and autistic children aged 6–7 years. The speaker was always a child (neurotypical or autistic); the listener was a human or the toy robot which reacts to speech expression by nodding only. The results appear to indicate that minimalistic artificial environments could be considered as the root of neuronal organization and reorganization with the potential to improve brain activity. They would support the embrainment of cognitive verbal and nonverbal emotional information processing.


Neurotypical child Autism Robot Play Emotion Embrainment 



We thank all the participants and their parents, The Major, the Pedagogical Inspector, the Director and the team of the principal elementary school of the first district of Paris, the National Department of Education and Research. The research is supported by the Franco-Japanese Foundation of Paris.


  1. 1.
    Giannopulu I (2013) Multimodal interactions in typically and atypically developing children: natural vs. artificial environments. Cogn Process 14:323–331CrossRefGoogle Scholar
  2. 2.
    Bavelas JB, Coates L, Johnson T (2002) Listener responses as a collaborative process: the role of gaze. J Commun 52:566–580CrossRefGoogle Scholar
  3. 3.
    Dick AS, Solodkin A, Small SL (2010) Neural development of networks for audiovisual speech comprehension. Brain Lang 114:101–114CrossRefGoogle Scholar
  4. 4.
    Pelphrey KA, Caster EJ (2008) Charting the typical and atypical development of the social brain. Dev Psychopathol 20:1081–1102CrossRefGoogle Scholar
  5. 5.
    Corbett BA, Carmean V, Ravizza S, Wendelken C, Henry ML, Carter C, Rivera SM (2009) A functional and structural study of emotion and face processing in children with autism. Psychiatry Res 30:196–205CrossRefGoogle Scholar
  6. 6.
    Frith U, Frith CD (2003) Development and neurophysiology of mentalizing. Philos Trans Royal Soc B Biol Sci 358:459–473CrossRefGoogle Scholar
  7. 7.
    Brothers L (1990) The social brain: a project for integrating primate behaviour and neurophysiology in a new domain. Concepts Neurosci 1:27–51Google Scholar
  8. 8.
    Iacoboni M, Mazziotta JC (2007) Mirror neuron system: basic findings and clinical applications. Ann Neurol 3:213–218CrossRefGoogle Scholar
  9. 9.
    Baron-Cohen S (1995) Mindblindness. MIT Press, CambridgeGoogle Scholar
  10. 10.
    Pierno AC, Mari M, Lusher D, Castiello U (2008) Robotic movement elicits visuomotor priming in children with autism. Neuropsychologia 46:448–454CrossRefGoogle Scholar
  11. 11.
    Giannopulu I (2013) Multimodal cognitive nonverbal and verbal interactions: the neurorehabilitation of autistic children via mobile toy robots. IARIA Intl J Adv Life Sci 5:214–222Google Scholar
  12. 12.
    Kaufman AS, Kaufman NL (2008) K-ABC-II. La batterie pour l’examen psychologique de l’enfant-deuxième édition. Pearson-Paris ECPA, ParisGoogle Scholar
  13. 13.
    DSM-IV-TR (2003) Manuel diagnostique et statistique des troubles mentaux. Paris, Editions MassonGoogle Scholar
  14. 14.
    Schopler E, De Reichler RJ, Vellis RF, Daly K (1980) Toward objective classification of childhood autism: childhood Autism Rating Scale (CARS). JADD 10:91–103CrossRefGoogle Scholar
  15. 15.
    Watanabe T (2011) Human-entrained embodied interaction and communication technology. Emotion Eng 161–177Google Scholar
  16. 16.
    Gravetter FJ, Wallnau LB (2000) Statistics for the behavioral sciences, 5th edn. Wadsworth Thomson Learning, BelmontGoogle Scholar
  17. 17.
    Giannopulu I, Montreynaud V, Watanabe T (2014) Neurotypical and autistic children aged 6 to 7 years in a speaker-listener situation with a human or a minimalist interactor robot. In: The 23rd IEEE international symposium on robot and human interactive communication. IEEE RO-MAN, pp 942–948Google Scholar
  18. 18.
    Manta S (2012) Effets Neurophysiologiques de la stimulation du nerf vague: Implication dans le traitement de la dépression résistante et optimisation des paramètres de stimulation. Thèse de Doctorat, Université de Montréal, CanadaGoogle Scholar
  19. 19.
    Porges SW, Furman SA (2011) The early development of the autonomic nervous system provides a neural platform for social behavior: a polyvagal perspective. Infant Child Dev 20(1):106–118CrossRefGoogle Scholar
  20. 20.
    Toichi M, Kamio Y (2003) Paradoxal autonomic response to mental tasks in autism. J Autism Dev Disord 33:417–426CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.IHU-a-ICM Prisme-Pierre and Marie Curie UniversityParisFrance
  2. 2.Okayama Prefectural UniversitySojaJapan

Personalised recommendations