Robust Online Monitoring of Signal Temporal Logic

  • Jyotirmoy V. Deshmukh
  • Alexandre Donzé
  • Shromona Ghosh
  • Xiaoqing Jin
  • Garvit Juniwal
  • Sanjit A. Seshia
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9333)


Requirements of cyberphysical systems (CPS) can be rigorously specified using Signal Temporal Logic (STL). STL comes equipped with semantics that are able to quantify how robustly a given signal satisfies an STL property. In a setting where signal values over the entire time horizon of interest are available, efficient algorithms for offline computation of the robust satisfaction value have been proposed. Only a few methods exist for the online setting, i.e., where only a partial signal trace is available and rest of the signal becomes available in increments (such as in a real system or during numerical simulations). In this paper, we formalize the semantics for robust online monitoring of partial signals using the notion of robust satisfaction intervals (\(\mathtt {RoSI}\)s). We propose an efficient algorithm to compute the \(\mathtt {RoSI}\) and demonstrate its usage on two real-world case studies from the automotive domain and massively-online CPS education. As online algorithms permit early termination when the satisfaction or violation of a property is found, we show that savings in computationally expensive simulations far outweigh any overheads incurred by the online approach.


Online Algorithm Linear Temporal Logic Online Monitoring Syntax Tree Signal Trace 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported in part by TerraSwarm, one of six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA, by NSF Expeditions grant CCF-1139138, and by Toyota under the CHESS center at UC Berkeley.


  1. 1.
    Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  2. 2.
    Bartocci, E., Bortolussi, L., Nenzi, L., Sanguinetti, G.: System design of stochastic models using robustness of temporal properties. Theor. Comput. Sci. 587, 3–25 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bartocci, E., Bortolussi, L., Sanguinetti, G.: Data-driven statistical learning of temporal logic properties. In: Legay, A., Bozga, M. (eds.) FORMATS 2014. LNCS, vol. 8711, pp. 23–37. Springer, Heidelberg (2014) Google Scholar
  4. 4.
    Deshmukh, J.V., Donzé, A., Ghosh, S., Jin, X., Juniwal, G., Seshia, S.A.: Robust Online Monitoring of Signal Temporal Logic (2015). arXiv pre-printGoogle Scholar
  5. 5.
    Dokhanchi, A., Hoxha, B., Fainekos, G.: On-line monitoring for temporal logic robustness. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 231–246. Springer, Heidelberg (2014) Google Scholar
  6. 6.
    Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 167–170. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  7. 7.
    Donzé, A., Ferrère, T., Maler, O.: Efficient robust monitoring for STL. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 264–279. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  8. 8.
    Donzé, A., Juniwal, G., Jensen, J.C., Seshia, S.A.: CPSGrader website.
  9. 9.
    Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 92–106. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  10. 10.
    Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., McIsaac, A., Van Campenhout, D.: Reasoning with temporal logic on truncated paths. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 27–39. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  11. 11.
    Fainekos, G., Sankaranarayanan, S., Ueda, K., Yazarel, H.: Verification of automotive control applications using S-TaLiRo. In: Proceedings of the American Control Conference (2012)Google Scholar
  12. 12.
    Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for continuous-time signals. Theor. Comput. Sci. 410(42), 4262–4291 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ho, H.-M., Ouaknine, J., Worrell, J.: Online monitoring of metric temporal logic. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 178–192. Springer, Heidelberg (2014) Google Scholar
  14. 14.
    Hoxha, B., Abbas, H., Fainekos, G.: Benchmarks for temporal logic requirements for automotive systems. In: Proceedings of Applied Verification for Continuous and Hybrid Systems (2014)Google Scholar
  15. 15.
    Jin, X., Donzé, A., Deshmukh, J.V., Seshia, S.A.: Mining requirements from closed-loop control models. In: Proceedings of Hybrid Systems: Computation and Control, pp. 43–52 (2013)Google Scholar
  16. 16.
    Jones, A., Kong, Z., Belta, C.: Anomaly detection in cyber-physical systems: a formal methods approach. In: Proceedings of IEEE Conference on Decision and Control, pp. 848–853 (2014)Google Scholar
  17. 17.
    Juniwal, G., Donzé, A., Jensen, J.C., Seshia, S.A.: CPSGrader: synthesizing temporal logic testers for auto-grading an embedded systems laboratory. In: Proceedings of Conference on Embedded Software, October 2014Google Scholar
  18. 18.
    Kong, Z., Jones, A., Medina Ayala, A., Aydin Gol, E., Belta, C.: Temporal logic inference for classification and prediction from data. In: Proceedings of Hybrid Systems: Computation and Control, pp. 273–282 (2014)Google Scholar
  19. 19.
    Lemire, D.: Streaming Maximum-Minimum Filter Using no More Than Three Comparisons per Element (2006). arXiv preprint cs/0610046
  20. 20.
    Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS, vol. 3253, pp. 152–166. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  21. 21.
    Nickovic, D., Maler, O.: AMT: a property-based monitoring tool for analog systems. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 304–319. Springer, Heidelberg (2007) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jyotirmoy V. Deshmukh
    • 1
  • Alexandre Donzé
    • 2
  • Shromona Ghosh
    • 2
  • Xiaoqing Jin
    • 1
  • Garvit Juniwal
    • 2
  • Sanjit A. Seshia
    • 2
  1. 1.Toyota Technical CenterGardenaUSA
  2. 2.University of California BerkeleyBerkeleyUSA

Personalised recommendations