Runtime Verification Through Forward Chaining

  • Alan Perotti
  • Guido Boella
  • Artur d’Avila Garcez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9333)


In this paper we present a novel rule-based approach for Runtime Verification of FLTL properties over finite but expanding traces. Our system exploits Horn clauses in implication form and relies on a forward chaining-based monitoring algorithm. This approach avoids the branching structure and exponential complexity typical of tableaux-based formulations, creating monitors with a single state and a fixed number of rules. This allows for a fast and scalable tool for Runtime Verification: we present the technical details together with a working implementation.


Horn Clause Evaluation Table Evaluation Rule Rule System Reactivation Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Barringer, H., Rydeheard, D.E., Havelund, K.: Rule systems for run-time monitoring: from eagle to ruler. J. Logic Comput. 20, 675–706 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bauer, A., Leucker, M., Schallhart, C.: The good, the bad, and the ugly, but how ugly is ugly? In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS, vol. 4839, pp. 126–138. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  3. 3.
    Bauer, A., Leucker, M., Schallhart, C.: Monitoring of real-time properties. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 260–272. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  4. 4.
    Breitgand, D., Goldstein, M., Shehory, E.H.: Efficient control of false negative and false positive errors with separate adaptive thresholds. IEEE Trans. Netw. Serv. Manage. 8, 128–140 (2011)CrossRefGoogle Scholar
  5. 5.
    d’Avila Garcez, A.S., Zaverucha, G.: The connectionist inductive learning and logic programming system. Appl. Intell. 11, 59–77 (1999)CrossRefGoogle Scholar
  6. 6.
    Drusinsky, A.: The temporal rover and the ATG rover. In: Havelund, K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp. 323–330. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  7. 7.
    Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., McIsaac, A., Van Campenhout, D.: Reasoning with temporal logic on truncated paths. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 27–39. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  8. 8.
    Hollander, C.D., Annie, S.W.: The current state of normative agent-based systems. J. Artif. Soc. Soc. Simul. 14, 47–62 (2011)Google Scholar
  9. 9.
    Horn, A.: On sentences which are true of direct unions of algebras. J. Symb. Log. 16, 14–21 (1951)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kripke, S.A.: Semantical considerations on modal logic. Acta Philosophica Fennica 16, 83–94 (1963)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Lassez, J.-L., Maher, M.J.: The denotational semantics of horn clauses as aproduction system. In: Proceedings of the Association for the Advancement of Artificial Intelligence 1983, pp. 229–231 (1983)Google Scholar
  12. 12.
    Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Logic Algebraic Program. 78, 293–303 (2009)CrossRefzbMATHGoogle Scholar
  13. 13.
    Lichtenstein, O., Pnueli, A., Zuck, L.: The glory of the past. In: Parikh, R. (ed.) Logics of Programs. Lecture Notes in Computer Science, vol. 193, pp. 196–218. Springer, Heidelberg (1985) CrossRefGoogle Scholar
  14. 14.
    Lukasiewicz, J.: O logice trjwartosciowej (On Three-Valued Logic) (1920)Google Scholar
  15. 15.
    Perotti, A., d’Avila Garcez, A.S., Boella, G.: Neural networks for runtime verification. In: 2014 International Joint Conference on Neural Networks, IJCNN 2014, Beijing, China, July 6–11, 2014, pp. 2637–2644. IEEE (2014)Google Scholar
  16. 16.
    Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: Declare: full support for loosely-structured processes. In: 11th IEEE International Enterprise Distributed Object Computing Conference, EDOC 2007, pp. 287–287 (2007)Google Scholar
  17. 17.
    Pnueli, A.: The temporal logic of programs. In: Proceedings of the Annual Symposium on Foundations of Computer Science 1977, pp. 46–57 (1977)Google Scholar
  18. 18.
    van der Aalst, W., et al.: Process mining Manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  19. 19.
    Van Emden, M.H., Kowalski, R.A.: The semantics of predicate logic as a programming language. J. ACM 23, 733–742 (1976)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Alan Perotti
    • 1
  • Guido Boella
    • 1
  • Artur d’Avila Garcez
    • 2
  1. 1.University of TurinTurinItaly
  2. 2.City University LondonLondonEngland

Personalised recommendations